走出错误的阴影:如何在LangChain中高效处理工具调用错误

引言

在使用大型语言模型(LLM)调用工具时,尽管这种方法比仅依赖提示要可靠得多,但它并不完美。模型有时可能调用不存在的工具,或者返回的参数不符合请求的模式。本文将探讨如何在LangChain中构建错误处理机制,来缓解这些问题。

主要内容

1. 简化工具模式

保持模式简单,减少同时传递的工具数量,并为工具提供清晰的名称和描述,可以帮助降低错误风险,但这些措施并非万无一失。

2. 设置环境

首先,我们需要安装以下软件包:

%pip install --upgrade --quiet langchain-core langchain-openai

3. 定义工具和链

from langchain_core.tools import tool

@tool
def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int:
    """Do something complex with a complex tool."""
    return int_arg * float_arg

llm_with_tools = llm.bind_tools(
    [complex_tool],
)

# 定义链
chain = llm_with_tools | (lambda msg: msg.tool_calls[0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值