[构建智能代理:打造互动搜索助手的完整指南]

引言

在当今快速发展的人工智能领域,智能代理的构建成为了一个热门话题。智能代理是利用大型语言模型(LLMs)作为推理引擎,决定执行哪些操作并传递输入的系统。在本教程中,我们将学习如何构建一个能够与搜索引擎互动的智能代理。你将能够与该代理进行对话,并观察它调用搜索工具的过程。

主要内容

1. 准备知识

构建智能代理需要你对以下概念有所了解:

  • 聊天模型
  • 工具
  • 智能代理

2. 安装和设置

安装Jupyter Notebook

Jupyter Notebook是交互学习如何使用LLM系统的完美环境。你可以在这里找到安装指南。

安装相关库

执行下面命令安装必要的软件包:

%pip install -U langchain-community langgraph langchain-anthropic tavily-python

设置环境变量

使用LangSmith进行跟踪:

import getpass
import os

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangChain API key: ")

获取并设置Tavily的API密钥:

os.environ["TAVILY_API_KEY"] = getpass.getpass("Enter your Tavily API key: ")

3. 定义工具

我们将使用Tavily作为我们的搜索工具:

from langchain_community.tools.tavily_search import TavilySearchResults

search = TavilySearchResults(max_results=2)
tools = [search]

4. 使用语言模型

选择并配置你的语言模型:

from langchain_anthropic import ChatAnthropic

model = ChatAnthropic(model_name="claude-3-sonnet-20240229")

将工具绑定到语言模型:

model_with_tools = model.bind_tools(tools)

5. 创建代理

通过LangGraph创建代理:

from langgraph.prebuilt import create_react_agent

agent_executor = create_react_agent(model, tools)

代码示例

下面的代码展示了如何使用智能代理进行交互:

from langchain_core.messages import HumanMessage

config = {"configurable": {"thread_id": "abc123"}}
for chunk in agent_executor.stream(
    {"messages": [HumanMessage(content="hi im bob! and i live in sf")]}, config
):
    print(chunk)
    print("----")

for chunk in agent_executor.stream(
    {"messages": [HumanMessage(content="whats the weather where I live?")]}, config
):
    print(chunk)
    print("----")

使用API代理服务提高访问稳定性

常见问题和解决方案

挑战1:API访问不稳定

解决方案:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。

挑战2:工具调用失败

解决方案:确保API密钥和环境变量正确配置。

总结和进一步学习资源

通过本教程,你学会了如何构建一个基础的智能代理,并实现了与搜索引擎的互动。这仅是代理构建的开始,更复杂的功能可以通过LangChain和LangGraph探索。

进一步学习资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值