引言
在当今快速发展的人工智能领域,智能代理的构建成为了一个热门话题。智能代理是利用大型语言模型(LLMs)作为推理引擎,决定执行哪些操作并传递输入的系统。在本教程中,我们将学习如何构建一个能够与搜索引擎互动的智能代理。你将能够与该代理进行对话,并观察它调用搜索工具的过程。
主要内容
1. 准备知识
构建智能代理需要你对以下概念有所了解:
- 聊天模型
- 工具
- 智能代理
2. 安装和设置
安装Jupyter Notebook
Jupyter Notebook是交互学习如何使用LLM系统的完美环境。你可以在这里找到安装指南。
安装相关库
执行下面命令安装必要的软件包:
%pip install -U langchain-community langgraph langchain-anthropic tavily-python
设置环境变量
使用LangSmith进行跟踪:
import getpass
import os
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangChain API key: ")
获取并设置Tavily的API密钥:
os.environ["TAVILY_API_KEY"] = getpass.getpass("Enter your Tavily API key: ")
3. 定义工具
我们将使用Tavily作为我们的搜索工具:
from langchain_community.tools.tavily_search import TavilySearchResults
search = TavilySearchResults(max_results=2)
tools = [search]
4. 使用语言模型
选择并配置你的语言模型:
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model_name="claude-3-sonnet-20240229")
将工具绑定到语言模型:
model_with_tools = model.bind_tools(tools)
5. 创建代理
通过LangGraph创建代理:
from langgraph.prebuilt import create_react_agent
agent_executor = create_react_agent(model, tools)
代码示例
下面的代码展示了如何使用智能代理进行交互:
from langchain_core.messages import HumanMessage
config = {"configurable": {"thread_id": "abc123"}}
for chunk in agent_executor.stream(
{"messages": [HumanMessage(content="hi im bob! and i live in sf")]}, config
):
print(chunk)
print("----")
for chunk in agent_executor.stream(
{"messages": [HumanMessage(content="whats the weather where I live?")]}, config
):
print(chunk)
print("----")
使用API代理服务提高访问稳定性
常见问题和解决方案
挑战1:API访问不稳定
解决方案:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。
挑战2:工具调用失败
解决方案:确保API密钥和环境变量正确配置。
总结和进一步学习资源
通过本教程,你学会了如何构建一个基础的智能代理,并实现了与搜索引擎的互动。这仅是代理构建的开始,更复杂的功能可以通过LangChain和LangGraph探索。
进一步学习资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—