提高您的聊天机器人质量:无用户反馈时的智能评估

提高您的聊天机器人质量:无用户反馈时的智能评估

在当今的数字世界中,聊天机器人是部署大型语言模型(LLM)的最常见界面之一。然而,如何评估和提高聊天机器人质量常常成为开发者的痛点,因为用户通常不愿意留下显式反馈如点赞或踩。本文将介绍一种无需显式用户反馈的智能评估方法,帮助您持续优化聊天机器人的表现。

主要内容

1. 反馈的重要性和现状

在许多聊天机器人应用中,大约只有0.04%的查询会收到用户的显式反馈。然而,高达70%的查询是对先前问题的跟进,这些继续性信息可以被用来推断之前AI响应的质量。因此,通过多轮对话收集的隐式反馈信息,可以极大地帮助提升聊天机器人的质量。

2. LangChain评估器概述

LangChain提供了一个用于构建生产级LLM应用的平台。通过其内置的自定义评估器,系统可以根据用户的后续响应来评估AI的表现。这种方式消除了对用户显式反馈的依赖,为开发者提供了更多有价值的反馈数据。

3. 如何实现无显式反馈评估

以下是在LangChain中实现的方式:

my_chain.with_config(
    callbacks=[
        EvaluatorCallbackHandler(
            evaluators=[
                ResponseEffectivenessEvaluator(evaluate_response_effectiveness)
            ]
        )
    ],
)

这个评估器会使用如gpt-3.5-turbo这样的LLM来评估AI最近的聊天信息,并根据用户的后续响应生成评分和推理。

4. 环境配置

确保已设置环境变量以使用OpenAI和LangSmith服务:

export OPENAI_API_KEY=sk-...
export LANGSMITH_API_KEY=...
export 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值