提高您的聊天机器人质量:无用户反馈时的智能评估
在当今的数字世界中,聊天机器人是部署大型语言模型(LLM)的最常见界面之一。然而,如何评估和提高聊天机器人质量常常成为开发者的痛点,因为用户通常不愿意留下显式反馈如点赞或踩。本文将介绍一种无需显式用户反馈的智能评估方法,帮助您持续优化聊天机器人的表现。
主要内容
1. 反馈的重要性和现状
在许多聊天机器人应用中,大约只有0.04%的查询会收到用户的显式反馈。然而,高达70%的查询是对先前问题的跟进,这些继续性信息可以被用来推断之前AI响应的质量。因此,通过多轮对话收集的隐式反馈信息,可以极大地帮助提升聊天机器人的质量。
2. LangChain评估器概述
LangChain提供了一个用于构建生产级LLM应用的平台。通过其内置的自定义评估器,系统可以根据用户的后续响应来评估AI的表现。这种方式消除了对用户显式反馈的依赖,为开发者提供了更多有价值的反馈数据。
3. 如何实现无显式反馈评估
以下是在LangChain中实现的方式:
my_chain.with_config(
callbacks=[
EvaluatorCallbackHandler(
evaluators=[
ResponseEffectivenessEvaluator(evaluate_response_effectiveness)
]
)
],
)
这个评估器会使用如gpt-3.5-turbo
这样的LLM来评估AI最近的聊天信息,并根据用户的后续响应生成评分和推理。
4. 环境配置
确保已设置环境变量以使用OpenAI和LangSmith服务:
export OPENAI_API_KEY=sk-...
export LANGSMITH_API_KEY=...
export