# 探索自然语言API工具包:LangChain代理的高效调用指南
## 引言
自然语言API工具包(NLAToolkits)通过LangChain代理,实现跨端点的高效调用和组合。这篇文章旨在帮助开发者了解如何使用NLAToolkits组合并调用Speak、Klarna和Spoonacular等API,提升开发效率和创新能力。
## 主要内容
### LangChain工具包初探
LangChain是一个强大的框架,能够帮助开发者轻松地将多种API结合使用。其核心思想是通过自然语言接口简化API调用,使得复杂的任务变得更加易于管理。
### 使用LangChain进行多API组合
为了展示LangChain的能力,我们将使用OpenAI的`gpt-3.5-turbo-instruct`模型,并加载包括Speak和Klarna在内的几个自然语言API工具包。
```python
from langchain.agents import AgentType, initialize_agent
from langchain_community.agent_toolkits import NLAToolkit
from langchain_openai import OpenAI
# 初始化LLM
llm = OpenAI(
temperature=0, max_tokens=700, model_name="gpt-3.5-turbo-instruct"
)
# 加载工具包
speak_toolkit = NLAToolkit.from_llm_and_url(llm, "https://api.speak.com/openapi.yaml")
klarna_toolkit = NLAToolkit.from_llm_and_url(llm, "https://www.klarna.com/us/shopping/public/openai/v0/api-docs/")
创建代理并运行示例
我们将创建一个代理,通过其自然语言接口查询意大利服饰的相关信息。
# 创建代理
natural_language_tools = speak_toolkit.get_tool