理论辐照计算过程
1 整体
输入:经纬度,时间(到分钟),海拔
输出:水平面辐照值
只需要提供经纬度和时间,根据一系列的计算可得该点的理论辐照值。
(1) 计算过程涉及的公式有多种,同一个定义可能对应不同的计算逻辑,差异不会太大,都是基于相应的物理、数学逻辑的变现
(2) 需要获取相应的海拔高度,这里通链接访问获取
(3) 参考多个来源和解析,形成最终的结果,重点感谢该网站提供的专业且丰富的相关知识点:https://www.pveducation.org/
如下所示,绿色是根据输入得到该地区的理论辐照度,红色是当地真实辐照度。

以时间 2021-10-18 12:20:25举例说明
2 常规因子
Esc : 太阳常数,默认值 1367 w/m2 ,
latitude:经度
longitude :纬度
2.1 标准子午线
LSTM 是标准子午线计算公式,timezone是中国时区的值。
LSTM = (360/24)*timezone
timezone = 8
2.2 时间特征
# 解析时间相关参数
t = "2021-10-18 12:20:25"
import datetime
import pandas as pd
dt = pd.to_datetime("2021-10-18 12:20:25")
Y = dt.year # 年份 year
N = dt.dayofyear # 积日 ,一年中第几天 day
Hour = dt.hour # 地方标准小时数 也是 ST
Minute = dt.minute # 地方标准分钟数 F太阳高度角
Sd = Hour + ( Minute - 4 * ( 120 - longitude))/ 60 # 地方时
Lt = Hour + Minute/60 # local time 当前时间
2.3 海拔高度
存在一个提供接口的网站,根据经纬度,返回所在区域的海拔。
# lat 纬度 long:经度
def get_elevation(lat, long):
query = ('https://api.open-elevation.com/api/v1/lookup'f'?locations={lat},{long}')
r = requests.get(query).json() # json object, various ways you can extract value
elevation = pd.io.json.json_normalize(r, 'results')['elevation'].values[0]
return elevation
Elevation= get_elevation(lat, long)
3 角度值
3.1 赤纬角
Declination Angle,赤纬角,有时也称为偏角
Declination = 23.45 * sin( radians((360/365)*( N+ 284)))
N: 积日
其他参考公式:
参考1: -23.45*cos( (2*pi/ 365)*( self.day + 10) )
参考2: 23.45 * sin(radians((360/365)*(self.day - 81)))
3.2 太阳时角
HRA = math.acos( -1*tan( radians( Declination ) ) * tan( radians( latitude )))
Declination :赤纬角
latitude : 纬度
3.3 更正因子
modify_factor = sin( radians( latitude)) * sin(radians( Declination )) +\
cos( radians(latitude ))*cos( radians(Declination ))*cos(radians( HRA ))
HRA :太阳时角
latitude:纬度
Declination :赤纬角
3.4 天顶角
Zenith = acos( modify_factor )
modify_factor:更正因子
3.5 太阳方位角
Azimuth = math.degrees( asin( sin_Azimuth ))
# 其中:
sin_Zenith = np.sqrt( 1- modify_factor**2 )
sin_Azimuth = ( cos( radians( Declination ) ) * cos( radians( HRA) ) * cos( radians( latitude) ) - \
sin( radians( latitude) ) * sin( radians( Declination ) ) ) / sin_Zenith
modify_factor:更正因子
Declination : 赤纬角
HRA: 太阳时角
latitude:纬度
3.6 日角
sun_angle = 57.3 * 2 * pi * ( N - N0 + dN)/365.2422
W = Hour + Minute /60 # 观测时刻与格林尼治0时时间差订正值
L = ( longitude_int + longitude_float/60 )/15 # 由观测地点与格林尼治经度差产生的时间差订正值
N0 = 79.6764+0.2442*( Y - 1985 ) - int( 0.25*(Y - 1985 ))
dN = ( W + L)/24 # 积日订正值
N:积日,一年中的第几天
Y:时间取年
longitude_int: 纬度的整数
longitude_float:纬度的小数点数值
3.7 地方时差
Et = 0.0028+\
-1.9857*sin( radians( sun_angle )) + \
9.9059 *sin( radians( sun_angle )) - \
7.0924 *cos( radians( sun_angle )) + \
0.6882 *cos( radians( sun_angle ))
sun_angle:日角
3.7 太阳时角进化
根据地方时差更新太阳角
HRA2 = ( ( Sd + Et/60) - 12 ) * 15
Sd :地方时
Et: 地方时差
4 辐射
4.1 地外辐照度
df['modify_factor'] = [sin(radians(df['latitude'][i])) * sin(radians(df['Declination'][i] )) +\
cos(radians(df['latitude'][i])) * cos(radians(df['Declination'][i] )) *
cos(radians(df['HRA2'][i] )) for i in df.index]
df['corr_factor'] = [1.000423+\
0.032359*sin( radians(df['sun_angle'][i] )) +\
0.000086*sin( radians(2*df['sun_angle'][i]))-\
0.008349*cos( radians(df['sun_angle'][i] ))+\
0.000115*cos( radians(2*df['sun_angle'][i])) for i in df.index]
df['E'] = df["Esc"]*df['corr_factor']*df['modify_factor'] # E: 地外辐射度
latitude:纬度
Declination:赤纬角
HRA2:更新后的太阳时角
Esc:太阳常数
4.2 大气质量
df['M0'] =[np.sqrt(1229+( 614*sin( radians( df['Elevation'][i])) )**2 ) -614*sin( radians( df['Elevation'][i])) for i in df.index] # 海平面大气量
df['Ph0'] =(( 288-0.0065*df['high'] )/288)**5.256 # 大气修正系数
df['Mh'] = df['M0']*df['Ph0'] # 大气质量
Elevation: 海拔高度
4.3 辐射值
df['Direct_Radiant_Coeff'] = [0.56*(math.exp( -0.56*df['Mh'][i]) + math.exp( -0.95*df['Mh'][i]) ) for i in df.index] # 直射辐射透明系数 Tb
df['Scatter_Radiant_Coeff'] = 0.271-0.294*df['Direct_Radiant_Coeff'] # 散射辐射透明系数 Td
df['Direct_Radiant'] = df['Direct_Radiant_Coeff']*df['E'] # Eb 直射值
df['Scatter_Radiant'] = df['Scatter_Radiant_Coeff']*df['E'] # E_Td E_d 散射值
df['Radiant'] = df['Direct_Radiant']+df['Scatter_Radiant'] # 晴天下的 地表总辐射
E:地外辐照度
参考文献
重点参考文献5
文献1. 《BIPV中光伏阵列朝向和倾角对性能影响理论研究》陈 维,沈 辉,刘 勇
文献2. 《太阳电池全光路系统的研究与优化设计 》
文献3. 《基于天气聚类的光伏电站辐照度预测》
文献4. 《 SOLAR GEOMETRY FOR FIXED AND TRACKING SURFACES 》
文献5. https://www.pveducation.org/pvcdrom/properties-of-sunlight/energy-of-photon

该文介绍了一种基于经纬度和时间计算特定地点理论辐射值的方法,涵盖了标准子午线、时间特征、海拔高度等常规因子的计算,并详细讨论了角度值和辐射的影响。通过参考多个专业资源,提供了一个完整的理论辐射计算框架。
40

被折叠的 条评论
为什么被折叠?



