简介
辐照度也称为入射度,定义为:当电磁波由体外穿入体内时所构成的辐射通量密度,通称为入射度(Irradiance)《定量遥感》。太阳辐照度是指太阳辐射到达地球表面上单位面积单位时间内的辐射能量,单位为:瓦/平方米(W/㎡)。
影响因素
由于大气的存在,真正到达地球表面的太阳辐射能的大小要受许多因素的影响,包括太阳高度、大气质量、大气透明度、地理纬度、日照时间及海拔高度等。
大气层顶部的辐照度
维基百科中详细介绍了大气层顶部的辐照度的计算方法。几个关键参数计算方法如下,下图为不面向赤道的倾斜表面。
太阳天顶角(太阳入射角):
其中,
ω = the hour angle;
α = the altitude angle; 或 elevation angle
AZ = the solar azimuth angle;
δ = the declination angle;
φ = observer’s latitude.
辐照度:
与地球球体相切但高于大气层(海拔100 km或更高)的平面上的太阳通量密度(日照)为:
其中,Θ为太阳天顶角,注意:和前面的符号不同,都是同一个参数。
R
E
R_E
RE表示地球与太阳的距离,
R
0
R_0
R0为平均距离。
近似计算:
其中,n 是a day of the year。注意:这里有时候角度是弧度有时候是度,因此需要考虑cos函数的输入条件。
代码实现
function G = clearskymodel(Lat, Tilt, Azim, ClearnessIndex, yyyy,mm,dd)
dd=day(datetime([yyyy,mm,dd]),'dayofyear');
decl=23.45*sind((360/365)+(dd+284));
HRA = -180:0.25:180;
AngleOfIncident = acosd(...
- sind(Tilt)*sind(Azim)*cosd(decl)*sind(HRA) ...
+ sind(Tilt)*cosd(Azim)*sind(decl)*cosd(Lat) ...
- sind(Tilt)*cosd(Azim)*cosd(decl)*sind(Lat)*cosd(HRA) ...
+ cosd(Tilt)*cosd(decl)*cosd(Lat)*cosd(HRA) ...
+ cosd(Tilt)*sind(decl)*sind(Lat));
G0 = 1366.1*(1+(0.033*cosd((360*dd)/365)));
G = (G0*ClearnessIndex)*cosd(AngleOfIncident);
G(G<0)=0; % for G < 0 = 0
end
大气层顶全年辐射效应分布
左图为上述方法计算的大气层顶辐照度,右图为辐射传输模式计算的大气层顶辐照度,两种方式计算的数值分布基本一致。左图年平均值为287.3833w/m2,右图年平均值为282.4860w/m2。这里的计算结果与时间分辨率和空间分辨率有关,差别不会特别大,应该在这个数值附近。
上图为博文中方法与辐射传输模式计算结果互差。可以看到博文中方法比辐射传输模式方法略大一些,年平均大4.8973w/m2
下图为维基百科中大气层顶和表面辐照度。
地球表面的辐照度
到达地球大气层顶部的年平均太阳辐射约为1361 W/m2,表示围绕太阳的球形表面每单位面积太阳辐射的功率。从太阳的角度看,地球的大致圆盘在任何时候都接收到大致稳定的W/m2。这个圆盘的面积是πR2,R是地球的半径。因为地球大约是球形,所以它的总面积 4πR2,这意味着到达地球大气层顶部的太阳辐射仅需除以四即可获得340 W/m2。换句话说,按照一年和一天的平均值,地球大气层的日照强度为340 W/m2,这个数字对辐射强迫很重要。