深度学习最近这几年炒的特别热,而且在计算机视觉方面应用广泛,故而决定学习了解一波。
那么,第一个问题就来了,什么是机器学习?哇咔咔,这个光看名字就知道了,就是让机器具有人类不断学习的能力,并且解决我们现有的一些问题。先来说几个简单的概念:
特征:就是物体的属性,我们人类经过学习之后,可以很快的将简单的特征抽象出来,可是计算机不行啊,他又不能理解我们的语言,所以,我们就需要将特征抽象化,最终以数值的形式描述出来 。
模型:这个也很好理解,数学中的单值函数大家都学过吧,给一个输入,经过函数的关系映射之后,会产生一个输出。在机器学习中,这个输入就是我们提取出来的特征,关系映射在这里指的就是模型。
函数经过之后,会最终产生一个结果,那么这个结果对不对呢?如果有答案的话,我们就可以根据答案判断对错,那如果没有固定的一个正确答案呢?大家可以想想,这个就正好对应了机器学习的常见三种学习方式,分别是:监督学习、非监督学习、增强学习。
监督学习:给一个输入,在已知最终结果的情况下,产生一个输出,将输出与最终的答案做比较,如果一样的话,标明模型良好,如果不一样的话,可以根据最终结果适当的调整模型,使得输出与最终的答案一致,这样模型就是在输入输出的“监督”下不断的学习的,这就是监督学习。
非监督学习:在现有的条件下,其实许多东西都并没有标准答案,即使我们通过神经网络去训练,最终我们也不知道结果正不正确,只能通过很多方法结合区辅助判断结果的正确程度,所以叫做非监督学习。
增强学习:这个与之前两个不同,模型返回输出之后,一个外部的环境会对模型返回的输出做出响应,并返回两个结果。
1.返回一个奖励,这个奖励和监督学习不同,不直接衡量模型与最终结果的差距,而是以一种奖励的方法返回,如果
表现好,奖励就大,反之则小。
2.环境会返回一个新的输入,模型会对这个新的输入开始新一轮的响应。
总结一波:监督学习场景下,需要四个要素:模型、数据、目标函数(损失函数)和优化算法。
特征工程:通过一些操作,将原始的特征转换成更容易被处理的特征。
深层模型:看名字就知道了,这个模型经过的步骤肯定特别的繁琐,就像我们平时做数学题一样,有的题答案很简单,但是有的就很复杂,需要推论很多次最终才能算法答案,那么我们在做很简单的数学题的过程,就相当于一个浅层网络,反之,就是一个深层的模型,深层模型现在主要有两个难以解决的问题:
1.模型的深度越深,就变得更加的灵活,其中包含的参数就更多,想要训练一个这样的模型,需要大量的数据量。
2.模型的复杂度成倍的增长,导致模型在训练的过程中变得 不可控。
但是深层模型也有优点啊:并不需要设计算法,每一个层次产生的计算方式了能难以理解,难以描述,但是它确实反应当前数据的特点,它可以很好的适配数据,所以只要训练充分就变得异常优秀了。
最后的最后,总结一波深度学习的优点: