重做剑指offer(九)——变态跳台阶

重做剑指offer(九)——变态跳台阶


题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:这题与上题同理,我们也可以用同样的思路来解决,设n阶台阶有f(n)种跳法,若第一次跳1阶,那后面还有f(n-1)种跳法,若第一次跳2阶,后面还有f(n-2)种跳法,……若第一次跳n-1阶,则还有f(1)种跳法,若第一次跳n阶,则还有f(0)种跳法。用公式表达,也就是
f ( n ) = f ( n − 1 ) + f ( n − 2 ) + … … + f ( 1 ) + f ( 0 ) f(n) = f(n-1)+f(n-2)+……+f(1)+f(0) f(n)=f(n1)+f(n2)++f(1)+f(0)
其中 f ( 1 ) = 1 f(1) =1 f(1)=1 f ( 0 ) = 1 f(0) =1 f(0)=1

f ( n − 1 ) = f ( n − 2 ) + f ( n − 3 ) + … … + f ( 1 ) + f ( 0 ) f(n-1) = f(n-2)+f(n-3)+……+f(1)+f(0) f(n1)=f(n2)+f(n3)++f(1)+f(0)
f ( n − 2 ) = f ( n − 3 ) + f ( n − 4 ) + … … + f ( 1 ) + f ( 0 ) f(n-2) = f(n-3)+f(n-4)+……+f(1)+f(0) f(n2)=f(n3)+f(n4)++f(1)+f(0)
……
代入f(n),得到 f ( n ) = 2 n − 1 f(n) = 2^{n-1} f(n)=2n1
所以,该题答案如下:

public class Solution {
    public int JumpFloorII(int target) {
        return (int)Math.pow(2,target-1);
    }
}

知识点总结:多观察,多思考。

(要去做笔试题了,这次先写到这里)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值