P5020 货币系统 题解

博客探讨了设计最短等价货币系统的方法,通过四种不同的算法策略解决当n=2, 3, 25时的问题。算法涉及集合论、倍数关系判断、递归验证和动态规划优化,时间复杂度分析贯穿其中,最高得分算法能在n=25时有效解决问题。" 112846786,10228281,Python列表操作详解,"['Python', '列表操作', '编程', '数据结构']
摘要由CSDN通过智能技术生成

博客园同步

原题链接

简要题意:

求一个长度最小的货币系统与给出的货币系统等价。求这个货币系统的长度。等价的定义详见题目,不再赘述。

本文可能用到一些集合论,请放心食用。

算法一

n = 2 n=2 n=2 时,只需判断两个数的倍数关系。有倍数关系则答案为 1 1 1,否则为 2 2 2.

时间复杂度: O ( T × n ) O(T \times n) O(T×n).

实际得分: 15 p t s 15pts 15pts.

算法二

n = 3 n=3 n=3 时,首先,如果两个数都是另一个数的倍数,那么答案为 1 1 1.

否则,如果仍存在倍数关系,则答案为 2 2 2.

其余的情况,只需要考虑,最小的数和次小的数能否表示出最大的数。

能则为 2 2 2,否则为 3 3 3.

这里有很多种方法判断。比如:

  1. 暴力,用桶直接来, O ( max ⁡ a i ) O(\max a_i) O(maxai).

  2. 考虑解方程,用 exgcd \texttt{exgcd} exgcd 写, O ( log ⁡ max ⁡ a i ) O(\log \max a_i) O(logmaxai).

总之,时间复杂度为

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值