韦达定理

本文详细介绍了韦达定理,包括定义、求根公式的证明、韦达定理的证明及应用,并探讨了推广韦达定理的概念,适用于一元二次方程及其在平面几何、解析几何和方程论中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博客园同步

Case 1. 定义

韦达定理即:

在方程:

a x 2 + b x + c = 0 ( a , b , c ∈ R , a ≠ 0 ) ax^2 + bx + c = 0 (a,b,c \in R , a \not = 0) ax2+bx+c=0(a,b,cR,a=0)

中,两根 x 1 , x 2 x_1 , x_2 x1,x2 存在关系:

x 1 + x 2 = − b a , x 1 × x 2 = c a x_1 + x_2 = - \frac{b}{a} , x_1 \times x_2 = \frac{c}{a} x1+x2=ab,x1×x2=ac

Case 2. 求根公式的证明

首先我们要求出 x 1 x_1 x1 x 2 x_2 x2. 这也是 求根公式 的证明过程。

a x 2 + b x + c = 0 ax^2 + bx + c = 0 ax2+bx+c=0

4 a 2 x 2 + 4 a b x + 4 a c = 0 4a^2x^2 + 4abx + 4ac = 0 4a2x2+4abx+4ac=0

( 2 a x + b ) 2 − b 2 = − 4 a c (2ax + b)^2 - b^2 = -4ac (2ax+b)2b2=4ac

( 2 a x + b ) 2 = b 2 − 4 a c (2ax+b)^2 = b^2-4ac (2ax+b)2=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值