Case 1. 定义
韦达定理即:
在方程:
a x 2 + b x + c = 0 ( a , b , c ∈ R , a ≠ 0 ) ax^2 + bx + c = 0 (a,b,c \in R , a \not = 0) ax2+bx+c=0(a,b,c∈R,a=0)
中,两根 x 1 , x 2 x_1 , x_2 x1,x2 存在关系:
x 1 + x 2 = − b a , x 1 × x 2 = c a x_1 + x_2 = - \frac{b}{a} , x_1 \times x_2 = \frac{c}{a} x1+x2=−ab,x1×x2=ac
Case 2. 求根公式的证明
首先我们要求出 x 1 x_1 x1 和 x 2 x_2 x2. 这也是 求根公式 的证明过程。
a x 2 + b x + c = 0 ax^2 + bx + c = 0 ax2+bx+c=0
4 a 2 x 2 + 4 a b x + 4 a c = 0 4a^2x^2 + 4abx + 4ac = 0 4a2x2+4abx+4ac=0
( 2 a x + b ) 2 − b 2 = − 4 a c (2ax + b)^2 - b^2 = -4ac (2ax+b)2−b2=−4ac
( 2 a x + b ) 2 = b 2 − 4 a c (2ax+b)^2 = b^2-4ac (2ax+b)2=