CF1324D Pair of Topics 题解

博客讨论了如何高效解决CF1324D题目,通过将数组差值ci并利用upperbound函数找到大于0的配对,实现O(n)的时间复杂度和O(n)的空间复杂度解法。
摘要由CSDN通过智能技术生成

博客园同步

原题链接

简要题意:

有两个数组 a i a_i ai b i b_i bi,求有多少组 a i + a j > b i + b j ( i ≠ j ) a_i + a_j > b_i + b_j (i \not = j) ai+aj>bi+bj(i=j).

显然,纯暴力过不了这道题目。

首先,我们显然的作差,让 c i = a i − b i c_i = a_i - b_i ci=aibi.

那么,此时我们就需要找到 c i + c j > 0 ( i ≠ j ) c_i + c_j > 0 (i \not = j) ci+cj>0(i=j) 的个数。

由于我们有 upperbound \texttt{upperbound} upperbound 这样的好东西。

upperbound \texttt{upperbound} upperbound 返回从 [l,r-1] \text{[l,r-1]} [l,r-1] ≥ k \geq k k 的第一个数的迭代器。

那么,对每个 c i c_i ci,找出它前面 ≥ − c i \geq - c_i ci 的第一个数的位置 ,然后算一下就行了。

时间复杂度: O ( n ) O(n) O(n).

空间复杂度: O ( n ) O(n) O(n).

实际得分: 100 p t s 100pts 100pts.

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

const int N=2e5+1;
typedef long long ll;

inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

int f[N],g[N],n;
int a[N]; ll ans=0;
//记得开 long long

int main(){
	n=read();
	for(int i=1;i<=n;i++) f[i]=read();
	for(int i=1;i<=n;i++) g[i]=read();
	for(int i=1;i<=n;i++) a[i]=f[i]-g[i];
	sort(a+1,a+1+n); //排序保证二分的有序性
	for(int i=2;i<=n;i++) {
		int k=upper_bound(a+1,a+i,-a[i])-a; //上一个位置
		ans+=i-k; //中间一段的答案
	}
	printf("%lld\n",ans);
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值