数论四大定理的证明与部分应用(含算术基本定理)

本文详细探讨了数论中的欧拉定理、费马小定理、威尔逊定理和孙子定理,包括它们的证明过程和一些实际应用。例如,欧拉定理和费马小定理在求解模逆元上的应用,威尔逊定理在判断素数上的应用,以及孙子定理在解决同余方程组问题上的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博客园同步

首先声明:下文中所有的类似”因数“”整数“等的字眼,除特别说明,全部是对于正数而言,不包括负数或者是 0 0 0

Case 1. 欧拉定理

欧拉定理即:

对于 p p p 为素数, a a a 为任意正整数,存在

a φ p ≡ 1 ( m o d p ) a^{\varphi_p} \equiv 1 \pmod p aφp1(modp)

其中 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1.

说明: φ p \varphi_p φp ≤ p \leq p p 的数中与 p p p 互质的数的个数。

证:

S = φ p S = \varphi_p S=φp

构造数列:

X 1 , X 2 ⋯ X S X_1,X_2 \cdots X_S X1,X2XS

满足对于 1 ≤ i ≤ S 1 \leq i \leq S 1iS 有:

gcd ⁡ ( X i , p ) = 1 \gcd(X_i,p)=1 gcd(Xi,p)=1

显然存在这样的构造。

下面,由:

gcd ⁡ ( X i , p ) = 1 \gcd(X_i,p)=1 gcd(Xi,p)=1

gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1

可得

gcd ⁡ ( X i ⋅ a , p ) = 1 \gcd(X_i \cdot a , p)=1 gcd(Xia,p)=1

∏ i = 1 S X i ≡ ∏ i = 1 S X i ⋅ a ( m o d p ) \prod_{i=1}^S X_i \equiv \prod_{i=1}^S X_i \cdot a \pmod p i=1SXii=1SXia(modp)

下面证明另一个定理。


1 1 1.

定理 1 1 1.

对于

a ≡ b ( m o d p ) a \equiv b \pmod p ab(modp)

gcd ⁡ ( c , p ) = 1 \gcd(c,p)=1 gcd(c,p)=1

则:

a c ≡ b c ( m o d p ) \frac{a}{c} \equiv \frac{b}{c} \pmod p cacb(modp)

这是因为除以 c c c不会影响对 p p p的取模。


回到原证,可得:

∏ i = 1 S a ≡ 1 ( m o d p ) \prod_{i=1}^S a \equiv 1 \pmod p i=1Sa1(modp)

代入 S = φ p S = \varphi_p S=φp

即为:

a φ p ≡ 1 ( m o d p ) a^{\varphi_p} \equiv 1 \pmod p aφp1(modp)

得证。

Case 2. 费马小定理

费马小定理即:对于 p p p 为素数, a a a 为正整数,有:

a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1 \pmod p ap11(modp)

其中 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1.

首先,我们有欧拉定理:

a φ p ≡ 1 ( m o d p ) a^{\varphi_p} \equiv 1 \pmod p aφp1(modp)

p p p 为质数,显然 φ p = p − 1 \varphi_p = p-1 φp=p1 ,则:

a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod p ap11(modp)

得证。

Case 3. 威尔逊定理

威尔逊定理即:对于 p p p 为素数,有:

( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)! \equiv -1 \pmod p (p1)!1(modp)


1 1 1.

定理 2 2 2

对于质数 p p p ,在 2 − ( p − 2 ) 2 - (p-2) 2(p2) 中不存在任何一个数自己是自己的逆元。

反证:若存在,设为 a a a. 即:

a 2 ≡ 1 ( m o d p ) a^2 \equiv 1 \pmod p a21(modp)

a 2 − 1 ≡ 0 ( m o d p ) a^2-1 \equiv 0 \pmod p a210(modp)

( a − 1 ) ( a + 1 ) ≡ 0 ( m o d p ) (a-1)(a+1) \equiv 0 \pmod p (a1)(a+1)0(modp)

必然存在 a − 1 = 0 a-1=0 a1=0 a + 1 = p a+1=p a+1=p

则:

a = 1 a=1 a=1 a = p − 1 a=p-1 a=p1

所以,在 2 − ( p − 2 ) 2 - (p-2) 2(p2) 中不存在任何一个数自己是自己的逆元。

得证。

2 2 2.

定理 2 2 2

a a a b b b 的逆元 和

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值