数论四大定理的证明与部分应用(含算术基本定理)

博客园同步

首先声明:下文中所有的类似”因数“”整数“等的字眼,除特别说明,全部是对于正数而言,不包括负数或者是 0 0 0

Case 1. 欧拉定理

欧拉定理即:

对于 p p p 为素数, a a a 为任意正整数,存在

a φ p ≡ 1 ( m o d p ) a^{\varphi_p} \equiv 1 \pmod p aφp1(modp)

其中 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1.

说明: φ p \varphi_p φp ≤ p \leq p p 的数中与 p p p 互质的数的个数。

证:

S = φ p S = \varphi_p S=φp

构造数列:

X 1 , X 2 ⋯ X S X_1,X_2 \cdots X_S X1,X2XS

满足对于 1 ≤ i ≤ S 1 \leq i \leq S 1iS 有:

gcd ⁡ ( X i , p ) = 1 \gcd(X_i,p)=1 gcd(Xi,p)=1

显然存在这样的构造。

下面,由:

gcd ⁡ ( X i , p ) = 1 \gcd(X_i,p)=1 gcd(Xi,p)=1

gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1

可得

gcd ⁡ ( X i ⋅ a , p ) = 1 \gcd(X_i \cdot a , p)=1 gcd(Xia,p)=1

∏ i = 1 S X i ≡ ∏ i = 1 S X i ⋅ a ( m o d p ) \prod_{i=1}^S X_i \equiv \prod_{i=1}^S X_i \cdot a \pmod p i=1SXii=1SXia(modp)

下面证明另一个定理。


1 1 1.

定理 1 1 1.

对于

a ≡ b ( m o d p ) a \equiv b \pmod p ab(modp)

gcd ⁡ ( c , p ) = 1 \gcd(c,p)=1 gcd(c,p)=1

则:

a c ≡ b c ( m o d p ) \frac{a}{c} \equiv \frac{b}{c} \pmod p cacb(modp)

这是因为除以 c c c不会影响对 p p p的取模。


回到原证,可得:

∏ i = 1 S a ≡ 1 ( m o d p ) \prod_{i=1}^S a \equiv 1 \pmod p i=1Sa1(modp)

代入 S = φ p S = \varphi_p S=φp

即为:

a φ p ≡ 1 ( m o d p ) a^{\varphi_p} \equiv 1 \pmod p aφp1(modp)

得证。

Case 2. 费马小定理

费马小定理即:对于 p p p 为素数, a a a 为正整数,有:

a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1 \pmod p ap11(modp)

其中 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1.

首先,我们有欧拉定理:

a φ p ≡ 1 ( m o d p ) a^{\varphi_p} \equiv 1 \pmod p aφp1(modp)

p p p 为质数,显然 φ p = p − 1 \varphi_p = p-1 φp=p1 ,则:

a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod p ap11(modp)

得证。

Case 3. 威尔逊定理

威尔逊定理即:对于 p p p 为素数,有:

( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)! \equiv -1 \pmod p (p1)!1(modp)


1 1 1.

定理 2 2 2

对于质数 p p p ,在 2 − ( p − 2 ) 2 - (p-2) 2(p2) 中不存在任何一个数自己是自己的逆元。

反证:若存在,设为 a a a. 即:

a 2 ≡ 1 ( m o d p ) a^2 \equiv 1 \pmod p a21(modp)

a 2 − 1 ≡ 0 ( m o d p ) a^2-1 \equiv 0 \pmod p a210(modp)

( a − 1 ) ( a + 1 ) ≡ 0 ( m o d p ) (a-1)(a+1) \equiv 0 \pmod p (a1)(a+1)0(modp)

必然存在 a − 1 = 0 a-1=0 a1=0 a + 1 = p a+1=p a+1=p

则:

a = 1 a=1 a=1 a = p − 1 a=p-1 a=p1

所以,在 2 − ( p − 2 ) 2 - (p-2) 2(p2) 中不存在任何一个数自己是自己的逆元。

得证。

2 2 2.

定理 2 2 2

a a a b b b 的逆元 和

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
数论基础及其应用 作者:沈忠华 编著 出版时间:2015年版 内容简介   《数论基础及其应用》为数学与密码学交叉学科的特色教材,内容包括整除理论、同余、连分数、同余方程、原根。《数论基础及其应用》以数论知识为主线,有机地融入数论应用(主要是在密码学中的应用)的内容,理论与应用的知识的广度和深度都适度。《数论基础及其应用》可作为数学与应用数学专业、信息与计算科学专业和信息安全专业的本科生基础教材,也可作为密码学与信息安全专业的研究生教材。 目录 前言 第1章整除理论 1.1带余数除法 1.2辗转相除法 1.3最大公约数的性质 1.4最小公倍数 1.5算术基本定理 第2章同余 2.1同余的基本性质 2.2计算星期几 2.3循环比赛 第3章简单密码 3.1仿射加密 3.2矩阵加密 第4章剩余系 4.1完全剩余系 4.2简化剩余系 4.3Euler定理,Fermat定理 4.4数论函数 第5章不定方程 5.1一次不定方程 5.2方程x2+y2=x2 第6章同余方程 6.1同余方程的基本概念 6.2孙子定理 6.3模ρα的同余方程 6.4素数模的同余方程 第7章公钥密码 7.1公钥密码系统 7.2RSA加密 第8章二次剩余 8.1素数模的二次同余方程 8.2Legendre符号,二次互反律 8.3Jacobi符号 第9章原根 9.1指数及其基本性质 9.2原根与指标 9.3伪素数 第10章实数的表示 10.1连分数的基本性质 10.2实数的连分数表示 10.3循环连分数 10.4实数的b进制表示 第11章平方和 11.1二平方之和 11.2四平方之和 附录

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值