浅谈单调队列

博客园同步前置知识:简单 dp\text{dp}dp,队列。首先我们看一道题目:原题链接简要题意:给定一个长为 nnn 的数组,要求 不能选连续超过 mmm 个数,问选出数的最大值。n≤105,ai≤109n \leq 10^5 , a_i \leq 10^9n≤105,ai​≤109.注:本题将作为 作者讲解单调队列优化 dp\text{dp}dp 的引子题。O(nm)\mathcal{O}(nm)O(nm) 的 dp\text{dp}dp首先我们考虑用 fif_ifi​ 来表示 [1,
摘要由CSDN通过智能技术生成

博客园同步

前置知识:

简单 dp \text{dp} dp,队列。

首先我们看一道题目:原题链接

简要题意:

给定一个长为 n n n 的数组,要求 不能选连续超过 m m m 个数,问选出数的最大值。

n ≤ 1 0 5 , a i ≤ 1 0 9 n \leq 10^5 , a_i \leq 10^9 n105,ai109.

注:本题将作为 作者讲解单调队列优化 dp \text{dp} dp 的引子题。

O ( n m ) \mathcal{O}(nm) O(nm) dp \text{dp} dp

首先我们考虑用 f i f_i fi 来表示 [ 1 , i ] [1,i] [1,i] 的答案,但是你会发现一个问题:你不知道 i i i 选不选,就意味着你不知道 前面能选 m m m 个还是只能选 m − 1 m-1 m1 个(连续),无法进行操作。

于是我们用 f i , 0 f_{i,0} fi,0 表示 [ 1 , i ] [1,i] [1,i]不选 i i i 的答案。

f i , 1 f_{i,1} fi,1 表示 [ 1 , i ] [1,i] [1,i] i i i 的答案。

这样我们可以列出这样的状态转移方程:

{ f i , 0 = max ⁡ ( f i − 1 , 0 , f i − 1 , 1 ) f i , 1 = max ⁡ x = i − m i − 1 ( f x , 0 + ∑ j = x + 1 i a j ) \begin{cases} f_{i,0} = \max(f_{i-1,0} , f_{i-1,1}) \\ f_{i,1} = \max_{x=i-m}^{i-1} (f_{x,0} + \sum_{j=x+1}^i a_j)\\ \end{cases} {fi,0=max(fi1,0,fi1,1)fi,1=maxx=imi1(fx,0+j=x+1iaj)

只需要先算出 f i , 0 f_{i,0} fi,0,再算 f i , 1 f_{i,1} fi,1,可以保证无后效性。这样一个可实现的 dp \text{dp} dp.

可是这时间复杂度是 O ( n m 2 ) \mathcal{O}(nm^2) O(nm2) 的,无法通过。

一个显然的优化,用 s s s 表示 a a a 的前缀和,这样就变成了:

{ f i , 0 = max ⁡ ( f i − 1 , 0 , f i − 1 , 1 ) f i , 1 = max ⁡ x = i − m i − 1 ( f x , 0 + s i − s x ) \begin{cases} f_{i,0} = \max(f_{i-1,0} , f_{i-1,1}) \\ f_{i,1} = \max_{x=i-m}^{i-1} (f_{x,0} + s_i - s_x)\\ \end{cases} {fi,0=max(fi1,0,fi1,1)fi,1=maxx=imi1(fx,0+sisx)

时间复杂度会是 O ( n m ) \mathcal{O}(nm) O(nm),仍然无法通过。

那么如何优化这个 dp \text{dp} dp 呢?

你考虑到 f i , 1 f_{i,1} fi,1 的决策实际上是连续的一段: [ i − m , i − 1 ] [i-m , i-1] [im,i1] 区间。

所以我们可以用 单调队列优化

模板题:单调队列优化 dp \text{dp} dp

单调队列有啥用?

首先,我们知道,队列里可以有很多元素。

下面我们将用集合的形式来表示队列或数组,如 { 1 , 2 , 4 } \{ 1,2,4\} {1,2,4} 则表示队列中依次有元素 1 , 2 , 4 1,2,4 1,2,4,或者是一个长度为 3 3 3 的序列,其元素依次为 1 , 2 , 4 1,2,4 1,2,4.

假设我们有一个队列 { a 1 , a 2 ⋯ a n } \{ a_1 , a_2 \cdots a_n\} {a1,a2an},你会发现,如果你要从其中取出一个 最大值,此时你必须遍历队列(你需要用另一个数据结构存储 a a a,并将队列一个个弹出,然后再重新维护 a a a),需要 O ( n ) \mathcal{O}(n) O(n).

那么这样一道题目就来了:

n n n 个数,给定 m m m,对每个 1 ≤ i ≤ n 1 \leq i \leq n 1in,求 max ⁡ j = max ⁡ ( 1 , i − m + 1 ) i a j \max_{j= \max(1,i-m+1)}^{i} a_j maxj=max(1,im+1)iaj.
数据范围: n , m ≤ 2 × 1 0 7 n,m \leq 2 \times 10^7 n,m2×107 a a a 给出随机生成器(略)。
时间限制: 500 m s 500ms 500ms.

本质就是求连续 m m m 个数的最大值。

诚然你可以用 f i f_i fi 表示答案,然后 O ( n m ) \mathcal{O}(nm) O(nm) 求出。

当然你也可以用高级数据结构(线段树等)来维护连续一段的最大值,这样是 O ( n log ⁡ m ) \mathcal{O}(n \log m) O(nlogm).

但是限于本题 2 × 1 0 7 2 \times 10^7 2×107 的数据,无法通过。

我们需要一个 O ( n ) \mathcal{O}(n) O(n) 的算法。

这时,单调队列的应用就到了。

单调队列是啥?

首先我们要知道单调队列是什么。

对于一个队列 q q q 中的元素 { a 1 , a 2 ⋯ a n } \{ a_1 , a_2 \cdots a_n\} {a1,a2an},如果在操作时能 时时保证 a a a 的有序性,则 q q q 为单调队列。

通常,我们有 priority_queue 来实现,需要单次 log ⁡ \log log 的复杂度。如果用堆也一样。

但是,现在,对于 连续一段数的极值,我们可以用特殊的方式实现。

单调队列的维护(引子)

我们用单调队列来维护 对当前位置有决策性作用的节点

比方说一个数组 { 3 , 2 , 1 } \{3 , 2 , 1\} {3,2,1},对 1 1 1 有决策性作用的节点有 3 , 2 , 1 3,2,1 3,2,1.

但是数组 { 1 , 2 , 3 } \{1 , 2 , 3\} {1,2,3},对 3 3 3 有决策性作用的节点就只有 3 3 3.

  • 如何理解?

对已经失去决策性作用的节点,出队;否则入队。

  • 什么是失去决策性作用?

这样可以做到 O ( n ) \mathcal{O}(n) O(n) 的维护。

  • 这些都是啥?
单调队列的维护(正题)

下面我们用一个例子来解释。

对于 { 1 , 4 , 3 , 5 , 2 } \{ 1,4,3,5,2\} {1,4,3,5,2} 求解上述问题, m = 3 m=3 m=3,如何快速得解呢?

起初单调队列为空。

然后,对于 1 1 1 号节点,显然决策只有一个:

在这里插入图片描述

所以 f 1 = 1 f_1 = 1 f1=1,这是显然的。

此时 a 2 = 4 a_2 = 4 a2=4 进来了,我们发现,对于 i ≥ 2 i \geq 2 i2 的节点 a 2 > a 1 a_2 > a_1 a2>a1,所以称 a 1 a_1 a1 失去了决策性作用。因为只要 a 1 a_1 a1 会被取到,那么 a 2 a_2 a2 也会被取到,而 a 2 > a 1 a_2 > a_1 a2>a1,所以 a 1 a_1 a1 已经失去了决策性

那么我们把 front − a 1 \text{front} - a_1 fronta1 踢出。

在这里插入图片描述

2 − 4 2-4 24 表示 a 2 = 4 a_2 = 4 a2=4.

这时 f 2 = 4 f_2 = 4 f2=4,显然。

下面 a 3 = 3 a_3 = 3 a3=3 进队之后, 3 3 3 有没有必要弹出呢?如果弹出, 3 3 3 在队尾又如何弹出呢?

不需要。因为,此时尽管 a 2 > a 3 a_2 > a_3 a2>a3,但对于 i ≥ 3 i \geq 3 i3,并不是当 a 3 a_3 a3 能被取到时, a 2 a_2 a2 就会被取到。因为 a 5 a_5 a5 的决策会来自 a 3 a_3 a3 而不是 a 2 a_2 a2,所以不应弹出 a 3 a_3 a3,也不应弹出 a 2 a_2 a2,就把 a 3 = 3 a_3 = 3 a3=3 插入在队尾

在这里插入图片描述

然后你会发现 front \text{front} front 永远维护最大值。因为如果队头不是最优的,显然 队头比其它任何节点下标小,所以队头还在只能说明它是最优的,否则它就会失去决策性

这样, f 3 = 4 f_3 = 4 f3=4.

下面 a 4 = 5 a_4 = 5 a4=5,显然 4 4 4 3 3 3 都可以卷铺盖走人了,因为 5 > 4 > 3 5 > 4 > 3 5>4>3,社会的竞争如此激烈。

在这里插入图片描述

这样的话, f 4 = 5 f_4 = 5 f4=5,没有问题。

然后 a 5 = 3 a_5 = 3 a5=3 进来之后,一样的道理,同时保留 5 5 5 3 3 3.在这里插入图片描述

此时 f 5 = 5 f_5 = 5 f5=5.

所以对于数组 { 1 , 4 , 3 , 5 , 2 } \{ 1,4,3,5,2\} {1,4,3,5,2},对应的 f f f { 1 , 4 , 4 , 5 , 5 } \{ 1,4,4,5,5\} {1,4,4,5,5},没有问题。

初学者大概都会问:

  • queue 还是 priority_queue 呢?

诚然是 queue,因为 对决策性的操作 已经保证了单调性,如果用优先队列反而会多一个 log ⁡ \log log

例题和配套代码

实际上,上面的题目仅仅是 洛谷 P1440 \text{P1440} P1440 的一个改版,把最小值改成了最大值而已。

Link 代码

顺便说一句,这个题似乎 O ( n log ⁡ m ) \mathcal{O}(n \log m) O(nlogm) 的微妙卡常是可以通过的

回归正题

说了这么多,希望你也知道单调队列优化 dp \text{dp} dp 大概是个啥了吧。

回归这题的转移方程式:

{ f i , 0 = max ⁡ ( f i − 1 , 0 , f i − 1 , 1 ) f i , 1 = max ⁡ x = i − m i − 1 ( f x , 0 + s i − s x ) \begin{cases} f_{i,0} = \max(f_{i-1,0} , f_{i-1,1}) \\ f_{i,1} = \max_{x=i-m}^{i-1} (f_{x,0} + s_i - s_x)\\ \end{cases} {fi,0=max(fi1,0,fi1,1)fi,1=maxx=imi1(fx,0+sisx)

s i s_i si 是不变的,实际上可以变形为:

{ f i , 0 = max ⁡ ( f i − 1 , 0 , f i − 1 , 1 ) f i , 1 = s i + max ⁡ x = i − m i − 1 ( f x , 0 − s x ) \begin{cases} f_{i,0} = \max(f_{i-1,0} , f_{i-1,1}) \\ f_{i,1} = s_i + \max_{x=i-m}^{i-1} (f_{x,0}- s_x)\\ \end{cases} {fi,0=max(fi1,0,fi1,1)fi,1=si+maxx=imi1(fx,0sx)

f i , 1 f{i,1} fi,1 的决策是连续的一段,只需要用单调队列取出 f x , 0 − s x f_{x,0} -s_x fx,0sx 最大的节点即可。

Link 代码

课后习题

洛谷 P2032 \text{P2032} P2032

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值