POJ1061扩展欧几里得定理

Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
根据题目我们可以列出方程   :(x+mt)-(y+nt)=kl  化简得到  (n-m)t+kl=x-y;
令n-m=a  x-y=d;  得到  at+kl=d 与扩展欧几里得方程非常像  (但是它不一定满足其条件)
由扩展欧几里得我们可以得到   at0+lk0=(a,l);
因此当 d|(a,l) 是有解
根据扩展欧几里得 我们可以求出 t0 ,k0;

然后 可以轻松的求出k来


#include<iostream>
using namespace std;
typedef long long ll;
int ex_gcd(ll a,ll b,ll &x,ll &y)
{
    if(!b){
        x=1;
        y=0;
        return a;//递归得到最大公约数
    }
    ll r=ex_gcd(b,a%b,x,y);
    ll tmp=x;
    x=y;
    y=tmp-a/b*y;
    return r;
}
int main()
{
    ll x,y,m,n,l,a,b,k,t;
    while(cin>>x>>y>>m>>n>>l)
    {
        ll a=n-m;
        ll d=x-y;
        ll e=ex_gcd(a,l,k,t);
        if(d%e){
            cout<<"Impossible"<<endl;
            continue;
        }
        k=k*d/e;
        ll r=l/e;
        k=(k%r+r)%r;//求出最小非负整数解
        cout<<k<<endl;
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值