题目链接“:
http://acm.hdu.edu.cn/showproblem.php?pid=4282
题意:
给定一个方程式 : x^z + y^z + x*y*x = k;
对于给定的k,有多少个三元组 (x,y,z)
使这个方程成立。
其中 0<x<y , z<1 ,k<2^32;
x,y,z,都是正整数。
分析:
现根据题目的范围和方程的结构可以先预测一下每个数的范围。
2<=z<=32 , 1<=x<y<2^16;
然后我们在分析一下方程。发现当,其中任意两个数固定的时候
这个方程的左边都是单调递增的。因此我们可以枚举其中的两个
然后二分判断另外一个存不存在。为了方便 我们可以枚举z,y.
二分判断x.
代码如下:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
LL k;
LL quick(LL a,LL b)
{
LL tmp =1;
for(int i=0;i<b;i++){
tmp=tmp*a;
if(tmp>=k) return -1;
}
return tmp;
}
LL calu(LL x,LL y,LL z){
return quick(x,z)+quick(y,z)+x*y*z;
}
bool bin_search(LL y,LL z){
LL low = 1,high = y,mid;
while(low<high){
mid=(low+high)>>1;
LL tmp = calu(mid,y,z);
//cout<<"mid "<<mid<<endl;
//cout<<"tmp "<<tmp<<endl;
if(tmp==k) return true;
else if(tmp<k) low=mid+1;
else high =mid;
}
return false;
}
int main()
{
while(~scanf("%lld",&k)&&k!=0){
if(k==1||k==2){
puts("0");
continue;
}
LL INF = (LL) sqrt(k*1.0);
LL cnt=0;
for(LL z = 2;z<=32;z++){
for(LL y = 2;y<=INF;y++){
LL tmp = quick(y,z);
if(tmp == -1) break;
if(bin_search(y,z))
cnt++;
}
}
printf("%I64d\n",cnt);
}
return 0;
}