Datawhale零基础入门数据挖掘-Task4建模调参

4.1 学习目标

了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程
完成相应学习打卡任务

4.2 内容介绍

1. 线性回归模型:

线性回归对于特征的要求;
处理长尾分布;
理解线性回归模型;

2. 模型性能验证:

评价函数与目标函数;
交叉验证方法;
留一验证方法;
针对时间序列问题的验证;
绘制学习率曲线;
绘制验证曲线;

3. 嵌入式特征选择:

Lasso回归;
Ridge回归;
决策树;

4. 模型对比:

常用线性模型;
常用非线性模型;

4.3 代码

导包

import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
def reduce_mem_usage(df):
    """ iterate df 的每个特征,修改数据类型,降低内存占用 """
    # 初始 df 的内存占用, sum的结果是 B,除以两个1024,变成 MB
    start_mem = df.memory_usage().sum() / 1024 / 1024 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        # 对于非object的数值型特征,分别计算该特征的最小值和最大值所占内存的上下界
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            # 如果是整型数据,从占用内存最小的数据类型开始,依次进行数值比较,测试 特征的取值范围 是否在 该数据类型的取值范围里
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64) 
            # 如果是浮点型数据,同样是依次进行比较,但是最小的是float16,而且float32基本上已经足够大,够用了
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        # 对于object型数据,转换为分类型数据,降低内存占用(没有时间型特征,只留了使用天数)
        else:
            df[col] = df[col].astype('category')
    
    # 修改每个特征的数据类型后,df 的内存占用
    end_mem = df.memory_usage().sum()  / 1024 / 1024 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    return df

读取数据


data = reduce_mem_usage(pd.read_csv('data_for_tree.gz'))
Memory usage of dataframe is 60507328.00 MB 
Memory usage after optimization is: 15724107.00 MB 
Decreased by 74.0% 
4.3.1 线性回归

基础建模

from sklearn.linear_model import LinearRegression
from matplotlib import pyplot as plt
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)

plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
plt.xlabel('v_9') 
plt.ylabel('price') 
plt.legend(['True Price','Predicted Price'],loc='upper right') 
print('The predicted price is obvious different from true price') 
plt.show()

在这里插入图片描述

import seaborn as sns 
print('It is clear to see the price shows a typical exponential distribution') 
plt.figure(figsize=(15,5)) 
plt.subplot(1,2,1) 
sns.distplot(train_y) 
plt.subplot(1,2,2) 
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])

在这里插入图片描述
对标签进行𝑙𝑜𝑔(𝑥 + 1) 变换,使标签贴近于正态分布

train_y_ln = np.log(train_y + 1)
import seaborn as sns 
print('It is clear to see the price shows a typical exponential distribution') 
plt.figure(figsize=(15,5)) 
plt.subplot(1,2,1) 
sns.distplot(train_y) 
plt.subplot(1,2,2) 
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])

在这里插入图片描述

4.3.2 五折交叉验证
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error,  make_scorer
def log_transfer(func):
    def wrapper(y, yhat):
        result = func(np.log(y), np.nan_to_num(np.log(yhat)))
        return result
    return wrapper
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
print('AVG:', np.mean(scores))
scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
print('AVG:', np.mean(scores))
scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores

在这里插入图片描述

4.3.3 模拟真实业务情况

绘制学习率曲线与验证曲线

import datetime
sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()

train_X = train[continuous_feature_names]
train_y_ln = np.log(train['price'] + 1)
val_X = val[continuous_feature_names]
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))

from sklearn.model_selection import learning_curve, validation_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )):  
    plt.figure()  
    plt.title(title)  
    if ylim is not None:  
        plt.ylim(*ylim)  
    plt.xlabel('Training example')  
    plt.ylabel('score')  
    train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error))  
    train_scores_mean = np.mean(train_scores, axis=1)  
    train_scores_std = np.std(train_scores, axis=1)  
    test_scores_mean = np.mean(test_scores, axis=1)  
    test_scores_std = np.std(test_scores, axis=1)  
    plt.grid()  
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,  
                     train_scores_mean + train_scores_std, alpha=0.1,  
                     color="r")  
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,  
                     test_scores_mean + test_scores_std, alpha=0.1,  
                     color="g")  
    plt.plot(train_sizes, train_scores_mean, 'o-', color='r',  
             label="Training score")  
    plt.plot(train_sizes, test_scores_mean,'o-',color="g",  
             label="Cross-validation score")  
    plt.legend(loc="best")  
    return plt  

plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)  

在这里插入图片描述

4.3.4 多种模型对比

线性模型 & 嵌入式特征选择

train = sample_feature[continuous_feature_names + ['price']].dropna()

train_X = train[continuous_feature_names]
train_y = train['price']
train_y_ln = np.log(train_y + 1)

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
models = [LinearRegression(),
          Ridge(),
          Lasso()]
result = dict()
for model in models:
    model_name = str(model).split('(')[0]
    scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))
    result[model_name] = scores
    print(model_name + ' is finished')

result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result

在这里插入图片描述

画出每个特征的重要性大小

model = LinearRegression().fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

在这里插入图片描述

model = LinearRegression(normalize=True).fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

在这里插入图片描述

model = Ridge().fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

在这里插入图片描述

model = Lasso().fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BigCabbageFy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值