完全二叉搜索树

完全二叉搜索树的中序遍历是一有序序列
对一有序序列按照中序遍历建立的完全二叉数即为完全二叉搜索树
在这里插入图片描述
在这里插入图片描述
直接用完全二叉树的性质来,左右孩子分别为根节点2倍和2倍+1,。通过该性质对有序的排列进行中序遍历可建树。

#include<cstdio>
#include<algorithm>
using namespace std;
int node[1010],tree[1010];
int N,pos;
void creatTree(int root){
	if(root>N)	return;
	int lchild=root*2,rchild=root*2+1;
	creatTree(lchild);
	tree[root]=node[pos++];
	creatTree(rchild);
}
bool cmp(int a,int b){
	return a<b;
}
int main(){
	scanf("%d",&N);
	for(int i=0;i<N;i++){
		scanf("%d",&node[i]);
	}
	sort(node,node+N,cmp);
	pos=0;
	creatTree(1);
	for(int i=1;i<=N;i++){
		printf("%d",tree[i]);
		if(i<N){
			printf(" ");
		}
	}
}

### PTA平台上的完全二叉搜索树实现方法 在PTA平台上解决与完全二叉搜索树(Complete Binary Search Tree, CBST)相关的问题时,通常需要结合二叉搜索树的特性和完全二叉的性质来设计算法。以下是关于如何实现在PTA上处理CBST的一些关键点: #### 1. **完全二叉搜索树的定义** 完全二叉搜索树是一种特殊的二叉搜索树,它不仅满足二叉搜索树的特性——即每个节点的左子中的所有键值均小于该节点的键值,而右子中的所有键值均大于该节点的键值[^3];还具有完全二叉的形状特点:除了最后一层外,其他各层都被填满,并且最后一层的所有节点都尽可能靠左排列。 #### 2. **构建完全二叉搜索树的方法** 为了构建一个完全二叉搜索树,可以采用如下策略: - 将输入的数据先排序。 - 使用分治法递归地构造,每次选取中间位置作为当前层次的根节点,左侧部分构成左子,右侧部分构成右子。 ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def sorted_array_to_bst(nums): if not nums: return None mid = len(nums) // 2 root = TreeNode(nums[mid]) root.left = sorted_array_to_bst(nums[:mid]) # 构建左子 root.right = sorted_array_to_bst(nums[mid+1:]) # 构建右子 return root ``` 此代码片段展示了如何通过已排序数组创建平衡的二叉搜索树,从而间接形成完全二叉搜索树[^4]。 #### 3. **验证是否为完全二叉搜索树** 验证一棵是否为完全二叉搜索树涉及两个方面: - 验证其是否为有效的二叉搜索树。 - 检查其结构是否符合完全二叉的要求。 可以通过广度优先遍历(BFS)检测是否存在任何违反完全二叉规则的情况。如果发现某个非叶子节点有右孩子却没有左孩子,或者在遇到第一个缺失的孩子之后还有新的孩子节点,则说明这不是一颗完全二叉。 #### 4. **删除操作优化** 当涉及到删除节点时,在保持完全性的前提下执行删除会更加复杂。一般做法是在找到待删除节点后,将其替换为其前驱或后继节点,并调整剩余部分以维持完全性[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值