题意:
对于一个数组,要求把它分割为两个长度相等或者长度差不超过1的两个子数组,且这两个子数组的和最接近,输出两个子数组和的差的绝对值。
解析:
设数组所有元素和为sum,要让分割的两个子数组的和最接近,相当于让它们的和都接近sum/2,我们不妨考虑和偏小的子数组。
首先确定这是一个背包问题,就是问
(1) 对于一个大小为sum/2
的背包,要选取哪些元素能尽可能装满背包,
(2)并且选取的元素数量为n/2
,这里有两个限制条件,
关于第一个条件,一开始有点想不明白怎么才能满足尽可能装满
这个条件,一般我们之前看到的背包都是如下表述的
有 N 件物品和一个容量为 V 的背包。放入第 i 件物品耗费的费用是 Ci1,得到的 价值是 Wi。求解将哪些物品装入背包可使价值总和最大。
而这里可获得最大价值它一人饰二角,既是背包大小,也是最后所求的最大价值。诞生这并不影响,写法照旧。
我们定义s[i,j,k]表示前i个元素选取j个元素,放入总容量为k的背包所占的最大容量,其中j<=i,原问题就是s[n,n/2,sum/2]
。
s[i, j, k] = max(s[i-1, j, k], v[i] + s[i-1, j-1, k-v[i]])
public class sulution3Fix {
public static void main(String[] args) {
int[] a = {3,7,4,11,8,10};
int ans = solution(a);
System.out.println(ans);
}
private static int solution(int[] input) {
int n = input.length;
int sum = 0;
for (int i = 0;i<n;i++)
sum+=input[i];
int[][][] s = new int[2][n/2+1][sum/2+1];
solve(input, s, n, sum);
int left = s[n%2][n/2][sum/2];
int right = sum - left;
int ans = Math.abs(left-right);
return ans;
}
private static void solve(int[] v, int[][][] s, int n,int sum){
//初始化使人头秃。。。瞎写了,不写了
for (int i = 1;i<=n;i++){
int maxj = Math.min(i, n/2);
for (int j = 1;j<=maxj;j++){
for (int k = 1;k<=sum/2 ;k++){
s[i%2][j][j] = s[(i-1)%2][j][k];
int take = k<v[i-1] ? 0:s[(i-1)%2][j-1][k-v[i-1]] + v[i-1];
s[i%2][j][k] = Math.max(s[i%2][j][k], take);
}
}
}
}
}
头秃
https://blog.csdn.net/Hackbuteer1/article/details/7638305
https://blog.csdn.net/yangtrees/article/details/8240929
https://blog.csdn.net/SunnyYoona/article/details/43370745