【真正离线安装】Adobe Flash Player 32.0.0.156 插件离线安装包下载(无需联网安装)

  网上很多人声称并提供的flash离线安装包是需要联网才能安装成功的,其实就是在线安装包,而这里提供的是真正的离线安装包,无需联网即可安装成功。

点击下面地址下载离线安装包:

Adobe Flash Player 32.0.0.156 for IE

Adobe Flash Player 32.0.0.156 for Firefox

Adobe Flash Player 32.0.0.156 for Opera&Chrome

Adobe Flash Player 32.0.0.156 for macOS Opera&Chromium

Adobe Flash Player 32.0.0.156 for macOS Safari&Firefox

Adobe Flash Player 32.0.0.156 for Linux 32-bit NPAPI

Adobe Flash Player 32.0.0.156 for Linux 32-bit PPAPI

Adobe Flash Player 32.0.0.156 for Linux 64-bit NPAPI

Adobe Flash Player 32.0.0.156 for Linux 64-bit PPAPI

点击下面的地址下载在线安装包:(在线安装更方便快捷)

Adobe Flash Player 在线安装

Adobe Flash Player 在线安装包下载

各版本使用说明:

ActiveX:适用于Win 7、Vista、XP系统IE内核浏览器、本地视频、游戏客户端

NPAPI:适用于FireFox(火狐)、Safari(苹果)、Opera (欧朋,12.17版以下)

PPAPI:适用于Chromium浏览器、Opera (欧朋,15.00版以上)

庞加莱猜想是20世纪初法国数学家亨利·庞加莱提出的一个问题,它的表述是:“三维欧几里德空间中任何一个闭合的简单曲面都是由一个简单闭合曲线围成的。” 在数学上,庞加莱猜想可以表述为:若$M$是一个没有边界的紧致三维流形,则$M$同胚于三维球面$S^3$。 庞加莱猜想是一个十分困难的问题,在很长一段时间里无人能够证明它。直到2002年,俄罗斯数学家格里戈里·佩雷尔曼通过自己的超几何化证明方法,证明了庞加莱猜想。 以下是庞加莱猜想的证明大致过程: 1. 首先,我们需要了解拓扑学中的一些基本概念。一个$n$维流形是指一个局部类似于$n$维欧氏空间的空间。比如,一个平面就是一个二维流形。一个紧致流形是指一个无限制的流形,它在有限空间内可以被包围。比如,一个球面就是一个紧致流形,而一个圆柱面则不是。 2. 接下来,我们需要了解拓扑学中的同胚和同调群的概念。两个拓扑空间同胚,当且仅当它们可以通过连续变形互相转化。同调群则是用来描述拓扑空间的“孔洞”的。比如,一个三维球面的同调群就是$Z$,而一个三维环面的同调群则是$Z \oplus Z$。 3. 根据佩雷尔曼的证明方法,我们需要构造一个流形的三角剖分,使得它的同调群可以被计算出来。然后,我们需要证明这个同调群与三维球面的同调群相同。 4. 构造三角剖分的过程中,我们需要利用流形的一些性质,比如它的连通性和欧拉特征数。利用这些性质,我们可以将流形分解成一些简单的形状,比如球面、环面和复合形状。 5. 接下来,我们需要证明这些简单形状的同调群与三维球面的同调群相同。这个证明需要用到一些拓扑学的工具,比如Mayer-Vietoris序列和Poincaré定理。 6. 最后,我们需要证明这些简单形状的拼合所得到的流形的同调群与三维球面的同调群相同。这个证明也需要用到一些拓扑学的工具,比如交错同调群和同调环序列。 总之,庞加莱猜想的证明涉及到很多高深的拓扑学理论和技术,需要非常严密的推理和证明过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TOMaster.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值