2411. Triangles

农夫John计划用N个栅栏柱子在二维平面上建立三角形牧场,要求至少两条边分别平行于x轴和y轴。给定柱子坐标,计算所有可能三角形牧场面积之和的两倍模10^9+7的余数。可以通过枚举点并计算以该点为直角顶点的三角形面积来解决此问题。
摘要由CSDN通过智能技术生成

2411. Triangles

(File IO): input:triangles.in output:triangles.out
时间限制: 1000 ms 空间限制: 262144 KB 具体限制
Goto ProblemSet


题目描述

Farmer John 想要给他的奶牛们建造一个三角形牧场。有 N(3≤N≤10^5)个栅栏柱子分别位于农场的二维平面上不同的点 (X1,Y1)…(XN,YN)。他可以选择其中三个点组成三角形牧场,只要三角形有一条边与 x 轴平行,且有另一条边与 y 轴平行。
FJ 可以组成的所有可能的牧场的面积之和等于多少?

输入

第一行包含 N。
以下 N 行每行包含两个整数 Xi 和 Yi,均在范围 −104…104 之内,描述一个栅栏柱子的位置。

输出

由于面积之和不一定为整数且可能非常大,输出面积之和的两倍模 10^9+7 的余数。

样例输入

4
0 0
0 1
1 0
1 2

样例输出

3

数据范围限制
测试点 1-2 满足 N=200。
测试点 3-4 满足 N≤5000。
测试点 5-10 没有额外限制。

提示
栅栏木桩 (0,0)、(1,0) 和 (1,2) 组成了一个面积为 1 的三角形,(0,0)、(1,0) 和 (0,1) 组成了一个面积为 0.5 的三角形。所以答案为 2*(1+0.5)=3。

方法一:
我们每次去枚举一个点(i),然后分别求出sumx[i](和i点同y坐标的点与i点的距离和)和sumy[i](和i点同x坐标的点与i点的距离和);然后再求出以i点为直角顶点的三角形总面积(sumx[i]*sumy[i]);

	sumx[p[i].num]=sumx[p[i-1].num]+(2*k-2-tot)*d;

同y坐标的点可以由它一个点的距离和推算出来,这样就不需要重复去计算,从而降低了程序的时间复杂度;

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#define fre(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
using namespace std;
const int Mod=1e9+7;
const int N=1e5+10;
struct node
{
   
	long long x,y,num;
} p[N];
long long n,sumx[N],sumy[N];
bool cmp1(node xx,node yy) {
   return (xx.y==yy.y)?xx.x<yy.x:xx.y<yy.y;}
bool cmp2(node xx,node yy) {
   return (xx.x==yy.x)?xx.y<yy.y:xx.x<yy.x;}
int main()
{
   
	fre(triangles);
	scanf("%lld",&n);
	for(int i=1;i<=n;i++) scanf("%lld%lld",
using UnityEngine; public class SphericalCone : MonoBehaviour { public float radius = 1.0f; // 底面半径 public float height = 1.0f; // 高度 public Vector3 vertex = Vector3.zero; // 顶点位置 public Vector3 center = Vector3.zero; // 底面中心点位置 private Mesh mesh; private void Start() { mesh = new Mesh(); GetComponent<MeshFilter>().mesh = mesh; GenerateMesh(); } private void GenerateMesh() { // 计算底面圆上的点 Vector3[] points = new Vector3[32]; float angle = 0.0f; float angleStep = 2.0f * Mathf.PI / points.Length; for (int i = 0; i < points.Length; i++) { points[i] = new Vector3(center.x + radius * Mathf.Cos(angle), center.y, center.z + radius * Mathf.Sin(angle)); angle += angleStep; } // 计算顶点到底面圆上点的向量 Vector3[] normals = new Vector3[points.Length]; for (int i = 0; i < points.Length; i++) { normals[i] = (points[i] - vertex).normalized; } // 计算三角形索引 int[] indices = new int[(points.Length - 1) * 3]; for (int i = 0; i < points.Length - 1; i++) { indices[i * 3] = i; indices[i * 3 + 1] = i + 1; indices[i * 3 + 2] = points.Length - 1; } // 创建Mesh mesh.vertices = new Vector3[points.Length + 1]; mesh.normals = new Vector3[points.Length + 1]; mesh.triangles = new int[indices.Length + 3]; for (int i = 0; i < points.Length; i++) { mesh.vertices[i] = points[i]; mesh.normals[i] = normals[i]; } mesh.vertices[points.Length] = vertex; mesh.normals[points.Length] = (vertex - center).normalized; for (int i = 0; i < indices.Length; i++) { mesh.triangles[i] = indices[i]; } mesh.triangles[indices.Length] = points.Length - 1; mesh.triangles[indices.Length + 1] = indices[0]; mesh.triangles[indices.Length + 2] = 0; mesh.RecalculateBounds(); } }这个脚本运行没有生成
06-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值