2411. Triangles
(File IO): input:triangles.in output:triangles.out
时间限制: 1000 ms 空间限制: 262144 KB 具体限制
Goto ProblemSet
题目描述
Farmer John 想要给他的奶牛们建造一个三角形牧场。有 N(3≤N≤10^5)个栅栏柱子分别位于农场的二维平面上不同的点 (X1,Y1)…(XN,YN)。他可以选择其中三个点组成三角形牧场,只要三角形有一条边与 x 轴平行,且有另一条边与 y 轴平行。
FJ 可以组成的所有可能的牧场的面积之和等于多少?
输入
第一行包含 N。
以下 N 行每行包含两个整数 Xi 和 Yi,均在范围 −104…104 之内,描述一个栅栏柱子的位置。
输出
由于面积之和不一定为整数且可能非常大,输出面积之和的两倍模 10^9+7 的余数。
样例输入
4
0 0
0 1
1 0
1 2
样例输出
3
数据范围限制
测试点 1-2 满足 N=200。
测试点 3-4 满足 N≤5000。
测试点 5-10 没有额外限制。
提示
栅栏木桩 (0,0)、(1,0) 和 (1,2) 组成了一个面积为 1 的三角形,(0,0)、(1,0) 和 (0,1) 组成了一个面积为 0.5 的三角形。所以答案为 2*(1+0.5)=3。
方法一:
我们每次去枚举一个点(i),然后分别求出sumx[i](和i点同y坐标的点与i点的距离和)和sumy[i](和i点同x坐标的点与i点的距离和);然后再求出以i点为直角顶点的三角形总面积(sumx[i]*sumy[i]);
sumx[p[i].num]=sumx[p[i-1].num]+(2*k-2-tot)*d;
同y坐标的点可以由它一个点的距离和推算出来,这样就不需要重复去计算,从而降低了程序的时间复杂度;
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#define fre(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
using namespace std;
const int Mod=1e9+7;
const int N=1e5+10;
struct node
{
long long x,y,num;
} p[N];
long long n,sumx[N],sumy[N];
bool cmp1(node xx,node yy) {
return (xx.y==yy.y)?xx.x<yy.x:xx.y<yy.y;}
bool cmp2(node xx,node yy) {
return (xx.x==yy.x)?xx.y<yy.y:xx.x<yy.x;}
int main()
{
fre(triangles);
scanf("%lld",&n);
for(int i=1;i<=n;i++) scanf("%lld%lld",