装箱问题 (洛谷题目)

这是一个关于装箱问题的动态规划算法分析。给定一个容量为V的箱子和n个不同体积的物品,目标是最小化箱子的剩余空间。通过输入箱子容量、物品数量及各物品体积,使用动态规划求解,状态转移方程为:dp[j] = max(dp[j], dp[j-a[i]]+a[i])。" 105081985,7554300,Vue 赋值与初始数据操作,"['前端开发', 'Vue', '状态管理', '数据操作']
摘要由CSDN通过智能技术生成

标题:装箱问题

题目描述:
【题目描述】
有一个箱子容量为V(正整数,0≤v≤20000),同时有n个物品(0< n ≤30),每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
【输入】
第一行是一个整数V,表示箱子容量。
第二行是一个整数n,表示物品数。
接下来n行,每行一个正整数(不超过10000),分别表示这n个物品的各自体积。
【输出】
一个整数,表示箱子剩余空间。
【输入样例】
24
6
8
3
12
7
9
7
【输出样例】
0
**算法分析:本题属于动态规划,背包型动态规划,相当于背包容量和背包中物品价值二者相等的一般背包问题。(貌似也称为伪背包问题)对于每一个物品i,都存在放入箱子和不放入箱子两种情况。当前箱子容量剩余j时,若i放入,则为dp[j-a[i]]+a[i]);
若i不放入,则为dp[i];因此,状态转移方程为:dp[j] = max(dp[j], dp[j-a[i]]+a[i])。分析完毕!!!

完整AC代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
using name
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值