标题:装箱问题
题目描述:
【题目描述】
有一个箱子容量为V(正整数,0≤v≤20000),同时有n个物品(0< n ≤30),每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
【输入】
第一行是一个整数V,表示箱子容量。
第二行是一个整数n,表示物品数。
接下来n行,每行一个正整数(不超过10000),分别表示这n个物品的各自体积。
【输出】
一个整数,表示箱子剩余空间。
【输入样例】
24
6
8
3
12
7
9
7
【输出样例】
0
**算法分析:本题属于动态规划,背包型动态规划,相当于背包容量和背包中物品价值二者相等的一般背包问题。(貌似也称为伪背包问题)对于每一个物品i,都存在放入箱子和不放入箱子两种情况。当前箱子容量剩余j时,若i放入,则为dp[j-a[i]]+a[i]);
若i不放入,则为dp[i];因此,状态转移方程为:dp[j] = max(dp[j], dp[j-a[i]]+a[i])。分析完毕!!!
完整AC代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
using name