描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
对于50%的数据,size≤10^4
对于100%的数据,size≤10^5
输入描述:
题目保证输入的数组中没有的相同的数字
示例1
输入:
[1,2,3,4,5,6,7,0]
返回值:
7
解题思路
拿到这道题,我第一时间尝试了运用暴力解题法
public class Solution {
public int InversePairs(int [] array) {
int count = 0;
for(int i=0;i<array.length;i++){
for(int j=i+1;j<array.length;j++){
if(array[i]>array[j]){
count++;
}
}
}
return count%1000000007;
}
}
结果,示例通过了,结果提交其他测试数据没有通过~
对于10^5数据。O(N^2)算法超时了
嗐~就剩一个没通过,题目没那么简单。。。相信考官也不想看到这样的暴力解题的结果
在网上看了大神的解题思路,膜拜了
记住一句话:求逆序对是归并排序的典型应用之一
所以这道题,运用的就是归并排序了
知识点复习:
归并排序是利用归并的思想实现排序的方法,该算法的核心就是分治策略,即分与治。
- 分:将问题分成小的问题然后递归求解
- 治:将分阶段得到的各答案“修补”到一起,即分而治之。
下面就是用归并排序对[8,4,5,7,1,3,6,2]进行排序的示意图。
总结一下归并排序的思路:
- 将当前区间分为两半[l,r] => [l,mid] [mid+1,r]
- 开辟两个新的运行栈,递归排序左右两半
- 归并,将左右两个有序序列合并成一个有序序列,返回上一级运行栈
用归并求解逆序对
public class Solution {
int count = 0;
public int InversePairs(int[] array) {
int[] temp = new int[array.length];
sort(array, 0, array.length - 1, temp);
return count;
}
private void sort(int[] array, int left, int right, int[] temp) {
int mid = (left + right) / 2;
if (left < right) {
sort(array, left, mid, temp);
sort(array, mid + 1, right, temp);
merge(array, left, mid, right, temp);
}
}
private void merge(int[] array, int left, int mid, int right, int[] temp) {
int i = left;
int j = mid + 1;
int index = left;
while (i <= mid && j <= right) {
if (array[i] <= array[j]) {
temp[index++] = array[i++];
} else {
temp[index++] = array[j++];
count = (count + mid - i + 1) % 1000000007;
}
}
while (i <= mid) {
temp[index++] = array[i++];
}
while (j <= right) {
temp[index++] = array[j++];
}
while (left <= right) {
array[left] = temp[left++];
}
}
}
这道题得多研究研究