剑指offer:数组中的逆序对(java版)

描述

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007


对于50%的数据,size≤10^4
对于100%的数据,size≤10^5
 

输入描述:

题目保证输入的数组中没有的相同的数字

示例1

输入:

[1,2,3,4,5,6,7,0]

返回值:

7

解题思路

拿到这道题,我第一时间尝试了运用暴力解题法

public class Solution {
    public int InversePairs(int [] array) {
        int count = 0;
        for(int i=0;i<array.length;i++){
            for(int j=i+1;j<array.length;j++){
                if(array[i]>array[j]){
                    count++;
                }
            }
        }
        return count%1000000007;
    }
}

结果,示例通过了,结果提交其他测试数据没有通过~

 对于10^5数据。O(N^2)算法超时了

嗐~就剩一个没通过,题目没那么简单。。。相信考官也不想看到这样的暴力解题的结果

在网上看了大神的解题思路,膜拜了

记住一句话:求逆序对是归并排序的典型应用之一

所以这道题,运用的就是归并排序

知识点复习:

归并排序是利用归并的思想实现排序的方法,该算法的核心就是分治策略,即分与治。

  1. 分:将问题分成小的问题然后递归求解
  2. 治:将分阶段得到的各答案“修补”到一起,即分而治之。

下面就是用归并排序对[8,4,5,7,1,3,6,2]进行排序的示意图。

总结一下归并排序的思路:

  1. 将当前区间分为两半[l,r] => [l,mid] [mid+1,r]
  2. 开辟两个新的运行栈,递归排序左右两半
  3. 归并,将左右两个有序序列合并成一个有序序列,返回上一级运行栈

用归并求解逆序对

 

public class Solution {
    
    int count = 0;
    
    public int InversePairs(int[] array) {

        int[] temp = new int[array.length];

        sort(array, 0, array.length - 1, temp);

        return count;
    }

    private void sort(int[] array, int left, int right, int[] temp) {

        int mid = (left + right) / 2;

        if (left < right) {
            sort(array, left, mid, temp);
            sort(array, mid + 1, right, temp);
            merge(array, left, mid, right, temp);
        }
    }

    private void merge(int[] array, int left, int mid, int right, int[] temp) {

        int i = left;
        int j = mid + 1;

        int index = left;

        while (i <= mid && j <= right) {
            if (array[i] <= array[j]) {
                temp[index++] = array[i++];
            } else {
                temp[index++] = array[j++];
                count = (count + mid - i + 1) % 1000000007;
            }
        }

        while (i <= mid) {
            temp[index++] = array[i++];
        }

        while (j <= right) {
            temp[index++] = array[j++];
        }

        while (left <= right) {
            array[left] = temp[left++];
        }
    }
}

这道题得多研究研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值