题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
对于%50的数据,size<=10^4
对于%75的数据,size<=10^5
对于%100的数据,size<=2*10^5
解题思想:
例如在数组{7,5,6,4}中,一共存在5对逆序对,分别是{7,6},{7,5},{7,4},{6,4},{5,4}。
看 到这个题目,我们的第一反应就是顺序扫描整个数组。每扫描到一个数组的时候,逐个比较该数字和它后面的数字的大小。如果后面的数字比它小,则这两个数字就组成一个逆序对。假设数组中含有n个数字。由于每个数字都要和O(n)个数字做比较,因此这个算法的时间复杂度为O(n2)。我们尝试找找更快的算法。
我们以数组{7,5,6,4}为例来分析统计逆序对的过程,每次扫描到一个数字的时候,我们不能拿它和后面的每一个数字做比较,否则时间复杂度就是O(n2)因此我们可以考虑先比较两个相邻的数字。
如下图所示,我们先把数组分解称两个长度为2的子数组,再把这两个子数组分别茶城两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7},{5}中7大于5,因此{7,5}组成一个逆序对。同样在第二对长度为1的子数组{6},{4}中也有逆序对{6,4}。由于我们已经统计了这两队子数组内部逆序对,因此需要把这两对子数组排序,以免在以后的统计过程中再重复统计。
接下来我们统计两个长度为2的子数组之间的逆序对。
我们先用两个指针分别指向两个子数组的末尾,并每次比较两个指针指向的数字。如果第一个子数组中的数字大于第二个子数组中的数字,则构成逆序对,并且逆序对的数目等于第二个子数组中的剩余数字的个数。如果第一个数组中的数字小于或等于第二个数组中的数字,则不构成逆序对。每一次比较的时候,我们都把较大的数字从后往前复制到一个辅助数组中去,确保辅助数组中的数字是递增排序的。在把较大的数字复制到数组之后,把对应的指针向前移动一位,接着来进行下一轮的比较。
经过前面详细的讨论,我们可以总结出统计逆序对的过程:先把数组分隔成子数组,先统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,还需要对数组进行排序。如果对排序算法很熟悉,我们不难发现这个排序的过程就是归并排序。
代码如下:
public class Solution {
// result用来存储交换次数,temp为归并排序所需的额外空间
private int result;
static int[] temp;
public int InversePairs(int[] array) {
// 考虑无效输入
if (array == null || array.length <= 0) {
return 0;
}
// 注意:因为result设置为成员变量,所以每一次调用该方法都要初始化为0!
result = 0;
temp = new int[array.length];
sort(array, 0, array.length - 1);
return result;
}
public void sort(int[] array, int left, int right) {
if (left == right) {
return;
}
int mid = (left + right) / 2;
sort(array, left, mid);
sort(array, mid + 1, right);
merge(array, left, mid, right);
}
public void merge(int[] array, int left, int middle, int right) {
int i = middle;
int j = right;
int index = right;
//把本次循环用到的数字拷贝进temp
for (int k = left; k <= right; k++) {
temp[k] = array[k];
}
while (i >= left && j >= middle + 1) {
if (temp[i] > temp[j]) {
array[index--] = temp[i--];
//逆序对数目为第二个子数组中剩余的数字
result += j - middle;
// 数值过大要进行求余
if (result > 1000000007)
{
result %= 1000000007;
}
} else
array[index--] = temp[j--];
}
while (i >= left)
array[index--] = temp[i--];
while (j >= middle + 1)
array[index--] = temp[j--];
}
}