[ZJOI2007] 仓库建设

版权声明:全文无版权,目前博客已搬迁至https://bill.moe https://blog.csdn.net/Bill_Yang_2016/article/details/54696338

题目描述

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。
这里写图片描述
 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。
  由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。
  你将得到以下数据:
   ● 工厂i距离工厂1的距离Xi(其中X1=0);
   ● 工厂i目前已有成品数量Pi;
   ● 在工厂i建立仓库的费用Ci;
  请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。


输入格式

第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。


输出格式

仅包含一个整数,为可以找到最优方案的费用。


样例数据

样例输入

3
0 5 10
5 3 100
9 6 10

样例输出

32

样例说明

在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。
如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。


数据规模

对于20%的数据,  N ≤500;
对于40%的数据,  N ≤10000;
对于100%的数据,  N ≤1000000。
所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。


题目分析

s为p的前缀和
不难得出动规方程
f[i]=min{f[j]+(s[i]-s[j])*x[i]-(Cost[i]-Cost[j])+c[i]}
=min{f[j]-x[i]*s[j]+Cost[j]}+c[i]+s[i]*x[i]-Cost[i]

f[i]+Cost[i]-s[i]*x[i]-c[i]=min{f[j]-x[i]*s[j]+Cost[j]}

令f[i]+Cost[i]-C[i]-s[i]*x[i]=B,y=f[j]+Cost[j],x=s[j],k=x[i]

得B=y-kx
维护下凸包,斜率优化乱搞


源代码

#include<algorithm>
#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
inline const long long Get_Int() {
    long long num=0,bj=1;
    char x=getchar();
    while(x<'0'||x>'9') {
        if(x=='-')bj=-1;
        x=getchar();
    }
    while(x>='0'&&x<='9') {
        num=num*10+x-'0';
        x=getchar();
    }
    return num*bj;
}
long long n,sum[1000005],x[1000005],p[1000005],c[1000005],Cost[1000005],Q[1000005],f[1000005],ans=0x7fffffff/2;
double Slope(long long j,long long k) {
    return (double)((f[j]+Cost[j])-(f[k]+Cost[k]))/(sum[j]-sum[k]);
}
int main() {
    n=Get_Int();
    for(int i=1; i<=n; i++) {
        x[i]=Get_Int();
        p[i]=Get_Int();
        c[i]=Get_Int();
    } 
    for(int i=1; i<=n; i++) {
        sum[i]=sum[i-1]+p[i];
        Cost[i]=Cost[i-1]+p[i]*x[i];
    }
    int Left=1,Right=1;
    Q[1]=0;
    f[0]=0;
    for(int i=1; i<=n; i++) {
        while(Left<Right&&Slope(Q[Left],Q[Left+1])<=x[i])Left++; //维护队首(删除非最优决策)
        long long Front=Q[Left];
        f[i]=f[Front]+sum[i]*x[i]-sum[Front]*x[i]-Cost[i]+Cost[Front]+c[i]; //计算当前f
        while(Left<Right&&Slope(Q[Right-1],Q[Right])>=Slope(Q[Right],i))Right--; //维护队尾(维护下凸包性质)
        Q[++Right]=i; //入队
    }
    printf("%lld\n",f[n]);
    return 0;
}

展开阅读全文

没有更多推荐了,返回首页