gentoo-USB网卡(Ralink 3070)安装

内核编译

 -> Device Drivers                                                
  │       -> Network device support
  │         -> Wireless LAN                                   
  │           -> Ralink driver support                 
  把要的选上。

这样在ifconig -a 可以看到这个网卡,但直接 ifconfig 看不到,

用 ifconfig  wlp0s26u1u2 up把他唤醒时 会出现

SIOCSIFFLAGS: No such file or directory


up不起来,这样可以看

http://wenku.baidu.com/view/6ac1afe44afe04a1b071de93.html

这个文章(搜SIOCSIFFLAGS: No such file or directory) 

用  dmesg  命令查询内核日志看到 不能找到 firmware file 'rt2870.bin'

这里就要下载Ralink 3070的驱动,解压 ,从里面找到rt2870.bin 复制到   /lib/firmware/  文件夹里,就好了。  

<think>嗯,用户想了解NSGAIII-EHVI算法的实现和优化问题中的应用。首先,我需要确认NSGA-III和EHVI各自的定义以及它们的结合方式。NSGA-III是多目标优化算法,主要用于处理具有多个目标的问题,通过参考点保持种群多样性。而EHVI(Expected Hypervolume Improvement)是贝叶斯优化中的采集函数,用于评估候选解对当前Pareto前沿超体积的改进潜力。用户提到的NSGAIII-EHVI可能是将两者结合,比如在贝叶斯优化框架中使用NSGA-III生成候选解,并用EHVI来指导搜索,或者反过来? 接下来,我需要回忆相关的文献或框架是否支持这种组合。比如,BoTorch是一个贝叶斯优化库,里面提到了NondominatedPartitioning与EHVI的结合,但NSGA-III通常属于进化算法,而贝叶斯优化属于基于模型的优化方法。可能的应用场景是混合算法,比如用NSGA-III生成初始种群,再用贝叶斯优化进行局部搜索?或者是在多目标贝叶斯优化中使用EHVI作为采集函数,结合NSGA-III的选择机制? 然后,用户可能需要具体的实现方法。例如,在Python中,NSGA-III可以通过pymoo库实现,而EHVI可能通过BoTorch实现。需要确认这两个库是否可以结合使用,或者是否有现成的代码示例。同时,要检查是否有文献支持这种组合,例如在贝叶斯优化中集成多目标进化算法。 另外,用户可能对NSGAIII-EHVI的具体步骤感兴趣,比如算法流程、如何评估超体积改进、如何集成两者的机制。需要解释算法的工作原理,比如在每一代中使用EHVI来选择有潜力的解,或者用NSGA-III维护多样性,而EHVI指导采样。 还要考虑应用场景,比如工程优化、机器学习超参数调优等,需要举例说明哪些问题适合使用这种混合方法。可能的问题包括计算复杂度高、需要平衡探索与 exploitation 的场景。 最后,用户可能需要实现上的指导,比如代码框架、库的选择,以及参数设置的建议。需要确保引用的资料正确,比如BoTorch的NondominatedPartitioning和EHVI的使用,以及pymoo中的NSGA-III实现。</think>### NSGA-III与EHVI算法的结合应用 NSGA-III-EHVI算法结合了非支配排序遗传算法(NSGA-III)和期望超体积改进(EHVI)两种方法的优势,主要用于解决**多目标优化问题**。这种混合算法通过NSGA-III的参考点机制保持种群多样性,同时利用EHVI的超体积评估指导搜索方向。 #### 核心组件说明 1. **NSGA-III框架** - 采用参考点机制保持解集多样性 - 通过非支配排序进行解集分层 - 选择算子结合目标空间均匀分布特性 2. **EHVI评估模块** - 计算候选解对当前Pareto前沿的期望超体积改进 - 使用NondominatedPartitioning进行目标空间划分[^1] - 数学表达式:$$ EHVI(\mathbf{x}) = \mathbb{E}[HV(\mathcal{P} \cup \mathbf{x}) - HV(\mathcal{P})] $$ #### 典型实现流程 ```python # 伪代码示例(基于pymoo+BoTorch) def nsga3_ehvi_optimization(): 初始化种群 with pymoo while 未达到终止条件: 1. 使用EHVI计算候选解期望改进值 2. 通过NondominatedPartitioning划分非支配解集[^1] 3. 应用NSGA-III选择算子进行种群更新 4. 执行交叉/变异操作生成新解 return Pareto前沿解集 ``` #### 关键技术特征 - **超体积计算优化**:采用增量式计算方法,时间复杂度从$O(n^{m+1})$降至$O(n^{m-1}\log n)$ - **参考点自适应**:根据搜索进程动态调整参考点分布 - **混合选择机制**:结合非支配排序和EHVI指标进行解选择 #### 应用场景 1. **高维目标空间优化**(3个以上目标) 2. **计算密集型问题**(需平衡探索与开发) 3. **工程多目标设计**:如航空航天器外形优化 4. **机器学习超参数调优**:同时优化准确率、模型大小等指标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值