Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition

1.前言

这篇文章还是经典的人脸识别思路。区别在于,传统的人脸识别在使用PCA的时候,采用的方法往往是将图像矩阵转为矢量。本文作者认为这种方式导致每一个样本的维度大,而样本少,这样构建的协方差矩阵并不合理。所以,作者提出了一种2维的PCA,在进行PCA,主特征提取的时候无需对图像进行矢量化。

2.TWO-DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS

2.1 Algorithm

Y = A X Y = AX Y=AX
Y ∈ R m , A ∈ R m × n , X ∈ R n Y \in \mathbb{R}^m,A\in \mathbb{R}^{m\times n},X\in \mathbb{R}^{n} YRm,ARm×n,XRn,这篇文章发表的比较早,2004年,表达方法有一些怪。比如大写的X,Y表示的是矩阵,且一般对应的是建模的响应变量和自变量。这里A代表图像,X代表的是投影向量,Y代表了得分。这里,为了和原来一致,其代表的意义不变,。
一般而言, A = U Σ V T A = U\Sigma V^T A=UΣVT,从 V V V里面可以得到 X X X,这里的V也可以通过构建 A T A = V Σ 2 V T A^TA=V\Sigma^2V^T ATA=VΣ2VT,即A的协方差矩阵的特征值。现在的问题是,对于一个图片集里面存在几类图片,每一类图片代表了一个人的照片,如何从每一类图片提取主要成分呢?论文提出了2DPCA方法。
S x = E ( Y − E ( Y ) ) E ( Y − E ( Y ) ) T = E ( A X − E ( A X ) ) E ( A X − E ( A X ) ) T = E ( A − E ( A ) X ) [ E ( A − E ( A ) ) X ] T S_x=E(Y - E(Y)) E(Y-E(Y) )^T=E(AX-E(AX))E(AX-E(AX))^T=E(A-E(A)X)[E(A-E(A))X]^T Sx=E(YE(Y))E(YE(Y))T=E(AXE(AX))E(AXE(AX))T=E(AE(A)X)[E(AE(A))X]T
对我来说,上式看着有点不自然,其实就是一个方差表达式,X的优化目标是使得tr(S_x)越大越好,其实写成 t r ( S x ) = E [ ( A − E ( A ) ) X ] T [ E ( A − E ( A ) ) X ] = X T E ( A − E ( A ) ) T [ E ( A − E ( A ) ) ) tr(S_x) = E[(A-E(A))X]^T[E(A-E(A))X]=X^TE(A-E(A))^T[E(A-E(A))) tr(Sx)=E[(AE(A))X]T[E(AE(A))X]=XTE(AE(A))T[E(AE(A))),这个信息表达的是图像A离开其中心 A ˉ \bar{A} Aˉ的偏离信息。将 A ˉ \bar{A} Aˉ作为背景信息, S x S_x Sx体现了偏离该背景的信息分布情况。这样做的好处是可以去掉背景信息干扰,只关注每一个样本相对背景信息的变异部分,和中心化有些类似,但是感觉在物理意义有些差异。
G t = 1 M ∑ j = 1 M ( A j − A ˉ ) A ˉ = 1 M ∑ j = 1 M ( A j ) t r ( S x ) = J ( X ) = X T G t X G_t = \frac{1}{M}\sum_{j=1}^M(A_j-\bar{A})\\ \bar{A}=\frac{1}{M}\sum_{j=1}^M(A_j)\\ tr(S_x)=J(X)= X^T G_tX Gt=M1j=1M(AjAˉ)Aˉ=M1j=1M(Aj)tr(Sx)=J(X)=XTGtX
由此 G t G_t Gt我们已经可以分解出主要成分的投影方向 X X X

2.2 Feature Extraction

假设去d个特征向量,提取的得分 Y k Y_k Yk,则有
Y k = A X k ; k = 1 ; 2 ; …   ; d Y_k = AX_k ;k =1;2;\dots;d Yk=AXk;k=1;2;;d
其实,到了这里剩余的部分就没什么新意了。PCA的主要目的是降维,用少量的特征代替原来的高维且可能存在共线的信息。作为图像分类,用新的特征信息代替原来信息的去计算欧式距离。用近邻法选择测试样本所属的类别.
文中也指出了,降维重构的方法,也很直观,跟SVD分解重构的方法类似,无需赘述

小结

2D-PCA主要提出了一种针对一个样本集的图像做SVD分解的方法,得到一组用于提取信息的特征向量。由于不需要再做图像的矢量化,所以,本文认为在构造的相关矩阵上,要优于传统方法。其他后续的做法与传统做法并没有什么不一样。从效果看看,跟目前的主流算法比较并没什么亮点,毕竟是04年的文章了,不能苛求。

参考文献

  1. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《二维相位展开:理论、算法和软件》是一本关于相位展开的电子版书籍。相位展开是数字图像处理领域中的一个重要技术,用于将相位信号从[-π,π]范围展开到连续的相位平面上。本书介绍了相位展开的相关理论、算法和软件。 首先,本书详细介绍了相位展开的基本理论。相位展开是通过解决相位不连续问题来恢复物体的真实相位信息。本书深入解释了相位不连续问题的来源和特点,并介绍了不同的相位展开方法。此外,本书还介绍了相位展开的数学模型和基本原理,帮助读者更好地理解相位展开的本质。 其次,本书系统地阐述了相位展开的算法。相位展开算法是实现相位展开的关键步骤,本书介绍了常见的相位展开算法,如Goldstein算法、格雷投影算法等。对于每种算法,本书分析了其原理、特点和适用范围,以及相关的数学推导和实验结果。读者可以根据需求选择合适的算法进行相位展开。 最后,本书提供了相位展开的软件。相位展开的实现需要借助计算机软件,本书介绍了一些常用的相位展开软件,包括MATLAB、Python等。本书通过具体的案例和操作指南,帮助读者学会使用这些软件进行相位展开。此外,本书还提供了相关的代码和实例,方便读者进行实践和深入研究。 总而言之,《二维相位展开:理论、算法和软件》是一本系统而全面的关于相位展开的电子版书籍。它介绍了相位展开的理论、算法和软件,帮助读者深入了解相位展开的原理和应用,并指导读者如何使用相位展开软件进行实践。这本书对于从事数字图像处理和光学测量等领域研究的科研人员和工程师来说,是一本不可或缺的参考资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值