基于单样本的模型转移方法

基于单样本的模型转移方法

背景

在近红外分析技术领域,模型转移主要解决因为不同仪器之间的成像差异,导致一台仪器上构建的模型无法在另外一台上使用。
在这里插入图片描述

现状

目前存在的模型转移可以分为有监督和无监督。其中,常见的监督方法有PDS和DOP,需要带一些带标签的光谱数据。无监督方法因为缺少标签,效果常常欠佳,如uDOP等。

本方法

为了实现上述方法的一种平衡,提高模型转移的效率,本文基于维纳滤波的思想,实现了单样本的模型转移方法。利用维纳滤波的思想,以源域的一条光谱作为期望信号,设计了一个滤波器,使之目标域的光谱滤波后,接近源域的光谱。其原理如下图所示。这里 x s \mathbf{x}_s xs x t \mathbf{x}_t xt x ^ s \mathbf{\hat{x}}_s x^s分别代表了源域光谱、目标域光谱以及滤波后的光谱。

在这里插入图片描述

转移结果

在这里插入图片描述

参考文献

[1] Z. Xie, X. Chen, J.-M. Roger, et al. Calibration transfer via filter learning [J]. Analytica Chimica Acta, 2024.

  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: FGSM(Fast Gradient Sign Method)是一种用于生成对抗样本方法,基于pytorch可以很方便地实现。 首先,我们需要一个已经训练好的模型,可以是一个分类模型或者其他类型的模型。然后,我们通过计算模型的损失函数对输入数据进行求导。根据求导结果,我们可以得到一个关于输入数据的梯度。接下来,我们根据梯度的方向来对输入数据进行扰动,生成对抗样本。 下面是一个基于pytorch的FGSM对抗样本的实现: ```python import torch import torch.nn as nn import torch.optim as optim def fgsm_attack(model, loss_fn, epsilon, input_data, target_label): input_data.requires_grad = True model.eval() output = model(input_data) loss = loss_fn(output, target_label) model.zero_grad() loss.backward() input_grad = input_data.grad.data modified_data = input_data + epsilon * torch.sign(input_grad) modified_data = torch.clamp(modified_data, 0, 1) return modified_data # 定义一个简模型 class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.fc = nn.Linear(784, 10) def forward(self, x): x = x.view(x.size(0), -1) x = self.fc(x) return x if __name__ == '__main__': # 加载模型 model = Model() model.load_state_dict(torch.load('model.pt')) model.eval() # 加载数据 input_data, target_label = load_data() # 定义损失函数 loss_fn = nn.CrossEntropyLoss() # 设置epsilon epsilon = 0.1 modified_data = fgsm_attack(model, loss_fn, epsilon, input_data, target_label) # 对抗样本的输出 output = model(modified_data) print(output) ``` 以上代码是一个基于pytorch的FGSM对抗样本生成的简示例。我们首先加载已经训练好的模型,然后通过调用fgsm_attack函数生成对抗样本。最后,我们使用修改后的输入数据来获得模型的输出。对抗样本可以通过在输入数据上添加一个与目标梯度方向相反、大小为epsilon的扰动来产生。 ### 回答2: FGSM(Fast Gradient Sign Method)是一种基于梯度信息的对抗样本生成方法,可以用于攻击深度学习模型。而基于PyTorch的实现,可以轻松地利用PyTorch的自动求导功能来计算模型的梯度信息。 首先,我们需要定义PyTorch模型,并加载训练好的模型参数。然后,我们可以定义一个函数来生成对抗样本。对于给定的输入样本,我们首先计算其对应的损失函数,并使用自动求导来计算损失函数对输入样本的梯度。接下来,我们根据梯度符号来产生扰动,从而生成对抗样本。最后,我们可以使用生成的对抗样本来对深度学习模型进行攻击。 FGSM对抗样本生成的具体步骤如下: 1. 定义PyTorch模型,并加载模型参数。 2. 对于给定的输入样本,将其输入模型得到输出。 3. 计算输入样本对应的损失函数,并使用自动求导来计算损失函数对输入样本的梯度。 4. 根据输入样本的梯度符号来产生扰动,这里的扰动大小可以通过指定的epsilon值来控制。 5. 将扰动添加到输入样本上,生成对抗样本。 6. 使用生成的对抗样本来对深度学习模型进行攻击,观察对抗样本的分类结果。 总之,PyTorch提供了便捷的梯度计算和自动求导功能,使得基于FGSM的对抗样本生成变得简。使用PyTorch实现的FGSM可以用于研究深度学习模型的鲁棒性以及对抗攻击的防御方法。 ### 回答3: 基于PyTorch的Fast Gradient Sign Method(FGSM)是一种常用的对抗样本生成方法。FGSM利用损失函数相对于输入数据的梯度信息来构造对抗样本,从而欺骗深度学习模型。 在PyTorch中使用FGSM生成对抗样本,需要以下几个步骤: 1. 加载和准备数据:首先通过PyTorch加载原始数据集,并对其进行预处理和归一化。 2. 定义模型:使用PyTorch定义一个希望攻击的深度学习模型。 3. 计算损失函数:通过对原始图像调用模型,计算出其预测结果,然后使用PyTorch的损失函数计算原始图像的损失。 4. 计算梯度:通过调用PyTorch的反向传播函数,计算原始图像关于损失的梯度。 5. 生成对抗样本:使用计算得到的梯度信息来扰动原始图像,添加一个扰动项,以便欺骗模型。扰动项的大小由一个称为epsilon的参数控制,它是我们人为设置的一个很小的值。 6. 确定对抗样本:通过将扰动项加到原始图像上,得到对抗样本。 值得注意的是,对抗样本的生成是为了误导模型而不影响人类的视觉感知。为了保持对抗样本和原始样本之间的可转移性,我们通常在epsilon的范围内限制扰动项的值。 最后,可以使用生成的对抗样本来测试被攻击模型的鲁棒性,即观察它是否在面对对抗样本时能够准确预测。如果鲁棒性下降,说明模型可能容易受到攻击,并需要采取相应的防御措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值