机器学习
文章平均质量分 57
bima2015
这个作者很懒,什么都没留下…
展开
-
CCBR2015青年论坛总结
1、人脸识别的相关介绍 (1)流程:人脸图像采集 人脸检测 人脸关键点定位 特征提取 分类器(人脸比对)。 (2)特征提取阶段的区别: DL之前:主要采用通过Gabor、LBP、SIFT等方法人工提取的局部特征,然后使用PCA等方法进行特征转换。 DL时代:使用多层卷积自动提取更加抽象的特征。 (3)人脸数据库 受控数据库:ORL、AR等。 非受控数原创 2015-11-27 10:37:57 · 957 阅读 · 0 评论 -
机器学习十大经典算法支持向量机SVM(Support Vector Machine)(上篇)
概念: 通过构造一个分类函数或分类器的方法,该方法能把数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知数据。 **全名:**Support Vector Machine(支持向量机) 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点。 机:一个算法 SVM是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的原创 2015-12-27 14:35:50 · 2868 阅读 · 0 评论 -
机器学习十大经典算法支持向量机SVM(Support victor machine)(下篇)
我们把所有样本点中间隔最小的那一点的间隔定为1,也就意味着集合中的其他点间隔都不会小于1,于是不难得到有不等式: yi[<w,xi>+b]≥1 (i=1,2,…,l)总成立。 于是上面的问题便转化成了求条件最优化问题: 下面添加一个简单的例题来说明一下理想情况下的解题思路: 对于以上所述的SVM,处理能力还是很弱,仅仅能处理线原创 2015-12-27 14:42:41 · 1384 阅读 · 0 评论