素数环问题 hdu1016

【大意】

给定数n(n<20),在n的所有排列中,记a[1],a]2],...,a[n],求满足a[i]+a[i+1](1<=i<n)是素数并且a[1]+a[n]也是素数的所有排列。排列按字典序输出。

【分析】

经典的搜索问题。

先搜索19+18以内的素数,记vis[i]:true表示i是合数,false表示是质数

记can[i][j]:true表示i+j是素数,false表示是合数

顺序从小到大搜索即可,注意相邻2个数必然奇偶不同,这样搜索到的结果满足字典序。

由于是素数环要求,可以双向搜索,但结果不一定是字典序,可用set保存。

【参考代码】

#include <string.h>
#include <stdio.h>
#include <set>
#include <ctype.h>
#include <algorithm>
#include <queue>
#include <string.h>

using namespace std;

const int maxn = 64 ;
int ans[maxn] ;
bool can[maxn][maxn] , vis[maxn] ;

inline bool get(int &t)
{
    bool flag = 0 ;
    char c;
    while(!isdigit(c = getchar())&&c!='-') if( c == -1 ) break ;
    if( c == -1 ) return 0 ;
    if(c=='-') flag = 1 , t = 0 ;
    else t = c ^ 48;
    while(isdigit(c = getchar()))    t = (t << 1) + (t << 3) + (c ^ 48) ;
    if(flag) t = -t ;
    return 1 ;
}

int n ;

void init()
{
	int i , j ;
	for( i = 2 ; i < maxn ; i++) if(!vis[i])
	{
		for( j = i*i ; j < maxn ; j += i ) vis[j] = 1 ;
	}
	for( i = 1 ; i <= 20 ; i++)
		for( j = i+1 ; j <= 20 ; j++)
			if(!vis[i+j])
				can[i][j] = can[j][i] = 1 ;
}

void dfs(int pos)
{
	int i ;
	if( pos == n )
	{
		if(!can[1][ans[n-1]]) return ;
		printf("1");
		for( i = 1 ; i < n ; i++) printf(" %d",ans[i]);
		puts("");
	}
	else
	{
		i = ( pos & 1 ) ? 2 : 3 ;
		for( ; i <= n ; i += 2 ) if(!vis[i]&&can[ans[pos-1]][i])
		{
			ans[pos] = i ;
			vis[i] = 1 ;
			dfs(pos+1);
			vis[i] = 0 ;
		}
	}
}

void solve()
{
	memset(ans,0,sizeof(ans));
	memset(vis,0,sizeof(vis));
	ans[0] = 1 ;
	vis[1] = 1 ;
	dfs(1);
}

int main()
{
	int i ; 
	init();
	for( i = 1 ; get(n) ; i++)
	{
		printf("Case %d:\n",i);
		solve();
		puts("");
	}	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值