算法导论思考题 找出所缺的数字

此题出自《算法导论》第4章递归式思考题4-2。

【题目说明】

某数组A[1...n]含有所有从0到n的整数,但其中有一个整数不在数组中,现在要找出这个不在数组中的整数。

因为A中的元素用二进制表示的,所以我们能用的唯一操作就是“取A[i]的第j位”,这个操作花费常数时间。

证明:如果访问数A中的信息的唯一方式是这种单一的位操作,仍能在O(N)时间内找出所缺的整数。

 

【分析】

如果一次能取出完整的A[i],则可以通过异或或者求和的方法找出。

然而一次只能取某数的一个位,故取完所有位即可获得该数,时间复杂度O(nlogn)。

其实,我们可以通过以某种取法,避免对每个数字的所有位都进行该操作来提高效率。

对于数组A[1...n],其数据范围为[0,n],取n的最高为1的位,记为maxBit位,则有(1<<maxBit) <= n < ( 1 << (maxBit+1) )。

然后遍历A中的元素,获得数组中maxBit位为1的个数,记为cnt,如果cnt == ( n - (1<<maxBit) + 1 ),则说明maxBit位中的元素都有,即缺失的数字该位为0,否则为1,从而将问题转化为一个规模更小的子问题。

其时间复杂度:T(N) = T(N/2) + O(N).

n^(log2(1)+1) = n , 故T(N) = O(N).

 

【完整代码】

 

//karsbin 2012.11.13

/*
 *1.封装一个操作,对于某个数组,只能取第i个数的第k位,数组从1开始
 *2.O(N)实现查找所缺数字
 */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>

const int maxn = 1024 ;
int array[maxn] ;
bool vis[maxn] ;

//返回j个第i个位,从低到高[0,31],返回值为1或者0
int getIthOfJ(int i,int j)
{
	return ( j & ( 1 << i ) ) > 0 ? 1 : 0 ;
}

//唯一可以访问array的操作,取第array[i]的第k位
int pick(int i, int k)
{
	return getIthOfJ(k, array[i]);
}

//创建一个数组,array[1]到array[n]包含有[0,n]中除了一个数字的所有其他数字
void buildArray(int n)
{
	if( n >= maxn - 1 ) 
	{
		n = maxn - 2 ;
	}
	
	srand(time(NULL));
	int i ;
	
	for( i = 1 ; i <= n + 1 ; i++) 
	{
		array[i] = i - 1 ;
	}

	int missingNumber = rand() % ( n + 1 ) ;
	printf("构造了一个数据范围为0到%d的数组,缺失的数字为%d\n",n,missingNumber);
	
	//移除一个随机数
	for( i = missingNumber + 1 ; i <= n ; i++) 
	{
		array[i] = array[i+1] ;
	}

	printf("构造如下数组:\n");
	for ( i = 1 ; i <= n ; i++)
	{
		printf("%d ",array[i]);
	}
	puts("");
}

//返回缺失的数字
int getTheMissingNumber(int n)
{
	//边界
	if ( n == 0 )
	{
		return 0 ;
	}

	int i , j , maxBit , cnt ;
	int ans = 0 ;
	for( maxBit = 31 ; maxBit >= 0 ; maxBit--) 
	{
		if( getIthOfJ(maxBit, n) == 1 )
		{
			break ;
		}
	}

	memset(vis,0,sizeof(bool)*(n+1));
	for ( i = 1 , cnt = 0 ; i <= n ; i++)
	{
		vis[array[i]] = 1 ;
		if ( getIthOfJ(maxBit, array[i]) == 1 )
		{
			//cnt记录array[i]中最高位maxbit为1的个数
			cnt++;
		}
	}

	if ( cnt == (n-(1<<maxBit)+1) )
	{
		//结果的最高位为0,拷贝最高位为0的数组进array
		for ( i = j = 0 ; i < (1<<maxBit) ; i++) if( vis[i] == 1 )
		{
			array[++j] = i ;
		}
		ans = getTheMissingNumber(j);
	}
	else
	{
		//结果的最高位为1,拷贝最高位为0的数组进array
		for ( i = ( 1 << maxBit ) , j = 0 ; i <= n ; i++) if( vis[i] == 1 )
		{
			array[++j] = i ^ ( 1 << maxBit ) ;
		}
		ans = (1 << maxBit) | getTheMissingNumber(j) ;
	}
	return ans ;
}

int main()
{
	int n ;
	while (~scanf("%d",&n))
	{
		buildArray(n);
		printf("所缺失的数字为:%d\n",getTheMissingNumber(n));
	}
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值