此题出自《算法导论》第4章递归式思考题4-2。
【题目说明】
某数组A[1...n]含有所有从0到n的整数,但其中有一个整数不在数组中,现在要找出这个不在数组中的整数。
因为A中的元素用二进制表示的,所以我们能用的唯一操作就是“取A[i]的第j位”,这个操作花费常数时间。
证明:如果访问数A中的信息的唯一方式是这种单一的位操作,仍能在O(N)时间内找出所缺的整数。
【分析】
如果一次能取出完整的A[i],则可以通过异或或者求和的方法找出。
然而一次只能取某数的一个位,故取完所有位即可获得该数,时间复杂度O(nlogn)。
其实,我们可以通过以某种取法,避免对每个数字的所有位都进行该操作来提高效率。
对于数组A[1...n],其数据范围为[0,n],取n的最高为1的位,记为maxBit位,则有(1<<maxBit) <= n < ( 1 << (maxBit+1) )。
然后遍历A中的元素,获得数组中maxBit位为1的个数,记为cnt,如果cnt == ( n - (1<<maxBit) + 1 ),则说明maxBit位中的元素都有,即缺失的数字该位为0,否则为1,从而将问题转化为一个规模更小的子问题。
其时间复杂度:T(N) = T(N/2) + O(N).
n^(log2(1)+1) = n , 故T(N) = O(N).
【完整代码】
//karsbin 2012.11.13
/*
*1.封装一个操作,对于某个数组,只能取第i个数的第k位,数组从1开始
*2.O(N)实现查找所缺数字
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
const int maxn = 1024 ;
int array[maxn] ;
bool vis[maxn] ;
//返回j个第i个位,从低到高[0,31],返回值为1或者0
int getIthOfJ(int i,int j)
{
return ( j & ( 1 << i ) ) > 0 ? 1 : 0 ;
}
//唯一可以访问array的操作,取第array[i]的第k位
int pick(int i, int k)
{
return getIthOfJ(k, array[i]);
}
//创建一个数组,array[1]到array[n]包含有[0,n]中除了一个数字的所有其他数字
void buildArray(int n)
{
if( n >= maxn - 1 )
{
n = maxn - 2 ;
}
srand(time(NULL));
int i ;
for( i = 1 ; i <= n + 1 ; i++)
{
array[i] = i - 1 ;
}
int missingNumber = rand() % ( n + 1 ) ;
printf("构造了一个数据范围为0到%d的数组,缺失的数字为%d\n",n,missingNumber);
//移除一个随机数
for( i = missingNumber + 1 ; i <= n ; i++)
{
array[i] = array[i+1] ;
}
printf("构造如下数组:\n");
for ( i = 1 ; i <= n ; i++)
{
printf("%d ",array[i]);
}
puts("");
}
//返回缺失的数字
int getTheMissingNumber(int n)
{
//边界
if ( n == 0 )
{
return 0 ;
}
int i , j , maxBit , cnt ;
int ans = 0 ;
for( maxBit = 31 ; maxBit >= 0 ; maxBit--)
{
if( getIthOfJ(maxBit, n) == 1 )
{
break ;
}
}
memset(vis,0,sizeof(bool)*(n+1));
for ( i = 1 , cnt = 0 ; i <= n ; i++)
{
vis[array[i]] = 1 ;
if ( getIthOfJ(maxBit, array[i]) == 1 )
{
//cnt记录array[i]中最高位maxbit为1的个数
cnt++;
}
}
if ( cnt == (n-(1<<maxBit)+1) )
{
//结果的最高位为0,拷贝最高位为0的数组进array
for ( i = j = 0 ; i < (1<<maxBit) ; i++) if( vis[i] == 1 )
{
array[++j] = i ;
}
ans = getTheMissingNumber(j);
}
else
{
//结果的最高位为1,拷贝最高位为0的数组进array
for ( i = ( 1 << maxBit ) , j = 0 ; i <= n ; i++) if( vis[i] == 1 )
{
array[++j] = i ^ ( 1 << maxBit ) ;
}
ans = (1 << maxBit) | getTheMissingNumber(j) ;
}
return ans ;
}
int main()
{
int n ;
while (~scanf("%d",&n))
{
buildArray(n);
printf("所缺失的数字为:%d\n",getTheMissingNumber(n));
}
}