题目描述:有一组数字,从1到n中减少了一个数,顺序也被打乱了,放在一个n-1的数组里,请找出丢失的数字。
其他类似的题目:
已知整型数组A[99],包含的所有99个元素都是从1-100中随机取值,并且这99个数两两互不相等,也就是说从1-100这100个数字中
有99个在数组内,有一个缺失。请设计一个算法将缺失的数字找出来。
解法1:用1+2+....n(即n(n+1)/2)减去当前输入数据的总和。
代码如下:
int loseNum(int complete[],int n,int lostAfter[],int m){ //原数组,原数组长度,丢失之后的数组,丢失之后数组长度
int i,j,sum1=0,sum2=0;
for(i=0;i
解法二:
用1*2*...*n除以当前输入的数据的积
代码如下:
int loseNum(int complete[],int n,int lostAfter[],int m){ //原数组,原数组长度,丢失之后的数组,丢失之后数组长度
int i,j,sum1=1,sum2=1;
for(i=0;i
上面的两种解法时间复杂度都为O(n),但可能会导致溢出(加法或乘法溢出),缓解溢出的方法:
解法1可优化为:
1-a[0]+2-a[1]+...+(n-1)-a[n-2]+n
解法二可优化为:
1/a[0]*2/a[1]...(n-1)/a[n-2]*n (使用浮点数除法)
解法三:
用1^2^...^n逐个异或当前输入数据。
代码:
int loseNum(int complete[],int n,int lostAfter[],int m){ //原数组,原数组长度,丢失之后的数组,丢失之后数组长度
int i,j,sum=complete[0];
for(i=1;i
时间复杂度为·O(n),不存在溢出的问题。
解法四:
对输入数据排序,然后从头到尾遍历一次。
int loseNum(int complete[],int n,int lostAfter[],int m){ //原数组,原数组长度,丢失之后的数组,丢失之后数组长度
int i,j,ret;
sort(complete,complete+n);
sort(lostAfter,lostAfter+m); //使用sort排序
for(i=0;i
时间复杂度2nlgn+n,渐进的时间复杂度为nlgn
问题拓展:
如果是少了两个数,那又该怎么办呢?
假设丢失的两个数为x和y
同上面的解法1和解法2,可想到类似的解法:
用1+2+...+n减去当前输入数据的总和,可以得到x+y;
用
减去当前输入数据的平方和可以得到。联立两个方程可以得到x和y
原文链接:点击打开链接