多项式化简技巧

多项式化简技巧

多项式部分

省流:

1. 1 2 + 2 2 + ⋅ ⋅ ⋅ + n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) 1^2+2^2+···+n^2=\frac{1}{6}n(n+1)(2n+1) 12+22+⋅⋅⋅+n2=61n(n+1)(2n+1)

2.若 n n n为奇数, x n + 1 = ( x + 1 ) ( x n − 1 ∗ ( − 1 ) n − 1 + x n − 2 ∗ ( − 1 ) n − 2 + ⋅ ⋅ ⋅ + x ∗ ( − 1 ) + 1 ) x^n+1=(x+1)(x^{n-1}*(-1)^{n-1}+x^{n-2}*(-1)^{n-2}+···+x*(-1)+1) xn+1=(x+1)(xn1(1)n1+xn2(1)n2+⋅⋅⋅+x(1)+1)

3.等比数列求和公式推导 x n − 1 = ( x − 1 ) ( x n − 1 + x n − 2 + ⋅ ⋅ ⋅ + x + 1 ) x^n-1=(x-1)(x^{n-1}+x^{n-2}+···+x+1) xn1=(x1)(xn1+xn2+⋅⋅⋅+x+1)

证明

1. 1 2 + 2 2 + ⋅ ⋅ ⋅ + n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) 1^2+2^2+···+n^2=\frac{1}{6}n(n+1)(2n+1) 12+22+⋅⋅⋅+n2=61n(n+1)(2n+1)

考虑数学归纳法。

n = 1 n=1 n=1时, 1 2 = 1 6 ∗ 1 ∗ 2 ∗ 3 = 1 1^2=\frac{1}{6}*1*2*3=1 12=61123=1

n = k n=k n=k时等式成立,则 1 2 + 2 2 + ⋅ ⋅ ⋅ + k 2 = 1 6 k ( k + 1 ) ( 2 k + 1 ) 1^2+2^2+···+k^2=\frac{1}{6}k(k+1)(2k+1) 12+22+⋅⋅⋅+k2=61k(k+1)(2k+1)

等式两边同时加上 ( k + 1 ) 2 (k+1)^2 (k+1)2 1 2 + 2 2 + ⋅ ⋅ ⋅ + k 2 + ( k + 1 ) 2 = 1 6 k ( k + 1 ) ( 2 k + 1 ) + ( k + 1 ) 2 1^2+2^2+···+k^2+(k+1)^2=\frac{1}{6}k(k+1)(2k+1)+(k+1)^2 12+22+⋅⋅⋅+k2+(k+1)2=61k(k+1)(2k+1)+(k+1)2

1 2 + 2 2 + ⋅ ⋅ ⋅ + k 2 + ( k + 1 ) 2 = ( k + 1 ) ( 1 6 k ( 2 k + 1 ) + ( k + 1 ) ) 1^2+2^2+···+k^2+(k+1)^2=(k+1)(\frac{1}{6}k(2k+1)+(k+1)) 12+22+⋅⋅⋅+k2+(k+1)2=(k+1)(61k(2k+1)+(k+1))

1 2 + 2 2 + ⋅ ⋅ ⋅ + k 2 + ( k + 1 ) 2 = ( k + 1 ) ( k ( 2 k + 1 ) + 6 ( k + 1 ) 6 ) 1^2+2^2+···+k^2+(k+1)^2=(k+1)(\frac{k(2k+1)+6(k+1)}{6}) 12+22+⋅⋅⋅+k2+(k+1)2=(k+1)(6k(2k+1)+6(k+1))

1 2 + 2 2 + ⋅ ⋅ ⋅ + k 2 + ( k + 1 ) 2 = ( k + 1 ) ( 2 k 2 + 7 k + 1 6 ) 1^2+2^2+···+k^2+(k+1)^2=(k+1)(\frac{2k^2+7k+1}{6}) 12+22+⋅⋅⋅+k2+(k+1)2=(k+1)(62k2+7k+1)

对于右边因式分解, 1 2 + 2 2 + ⋅ ⋅ ⋅ + k 2 + ( k + 1 ) 2 = ( k + 1 ) ( k + 2 ) ( 2 k + 3 ) 6 1^2+2^2+···+k^2+(k+1)^2=(k+1)\frac{ (k+2)(2k+3) }{ 6 } 12+22+⋅⋅⋅+k2+(k+1)2=(k+1)6(k+2)(2k+3)

1 2 + 2 2 + ⋅ ⋅ ⋅ + k 2 + ( k + 1 ) 2 = 1 6 ( k + 1 ) ( k + 2 ) ( 2 k + 3 ) 1^2+2^2+···+k^2+(k+1)^2=\frac{1}{6}(k+1)(k+2)(2k+3) 12+22+⋅⋅⋅+k2+(k+1)2=61(k+1)(k+2)(2k+3)

证毕。

最大公约数部分

省流:

Ps: ( a , b ) = g c d ( a , b ) (a,b)=gcd(a,b) (a,b)=gcd(a,b)

1. ( a , b ) = ( a , b + a x ) (a,b)=(a,b+ax) (a,b)=(a,b+ax)

杂项

省流:

1.对 x x x进行分解质因数,则 x = p 1 a 1 ∗ p 2 a 2 ∗ ⋅ ⋅ ⋅ ∗ p n a n x=p_1^{a_1}*p_2^{a_2}*···*p_n^{a_n} x=p1a1p2a2⋅⋅⋅pnan

d x d_x dx x x x的因数个数,则有 d x = ( a 1 + 1 ) ( a 2 + 1 ) ( a 3 + 1 ) ⋅ ⋅ ⋅ ( a n + 1 ) d_x=(a_1+1)(a_2+1)(a_3+1)···(a_n+1) dx=(a1+1)(a2+1)(a3+1)⋅⋅⋅(an+1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值