视频直播推荐系统

直播推荐方法:
1,人工排序,审核会给直播内容一个初始排序,然后再根据直播热度进行排序
2,曝光算法,每个主播转化能力有限,当房间超过一定数后就很难产生转化,每个主播都会拥有自己的曝光值,超过后便会向后排
3,内容匹配,用户会根据行为渠道被打相应用户标签,相关的直播内容在相关的用户前排序会比较高

 

=================================================================

目前,大部分直播平台的推荐页是以“原始分+动态分+人工干预”的方式排列主播的直播内容。其中,原始分是人工初始打分,包括主播的外貌、才艺、历史互动情况等;动态分是当前直播的具体表现,包括时长、关注量、真人观众数等;人工干预则是运营部门手动进行强制调整。某知名网络视频企业旗下直播平台,希望凭借技术部门的力量,通过A/B测试进一步优化推荐页面算法,找到最适合自身特点、最能促进用户活跃度的算法方式。

 

=================================================================

驱动头条系的第二个轮子,现在看来第二个轮子就是粉丝分发,或者叫社交分发。如今的今日头条已经更新过7个大版本,早已不是纯算法,而是“算法+社交+搜索+问答”的综合体。

 

=================================================================

YY基于推荐算法提升直播业务的效能实践

1.3 用户画像

1.4 面对丰富的用户需求,而内容是用户的核心诉求。

1.5 个性推荐在直播中应用场景以及挑战

在面对多样的场景和丰富的个性化需求上,yy利用ai来做到更高质量的内容和更高质量的推荐以及用户体验。

  • 视频压缩,直播的是一个动态的过程,利用人工智能和ai对视频进行压缩;
  • 超分,贷款有限的情况下对带宽进行超分;
  • 美颜的需求;
  • 内容理解;
  • 内容推荐;

二、手Y直播推荐系统(纯干货!!)

2.1 Y直播推荐系统模型

全部基于实时操作,第一步进行内容控制,召回层对内容进行初筛,利用复杂模型(多模型)来做整体排序和优化,达到更高效,更智能的推荐效果。

召回层面:根据用户的历史行为,把做相应的内容和产品的匹配。从多个维度进行召回;

其中非常值得提到的是相似性扩展和向量召回:利用机器学习和深度学习模型进行特镇计算和召回。

相似性扩展(对相似主播和用户进行扩展):

l基于经典协同过滤item-based、user-based方法

l基于矩阵分解方法

l基于用户有效观看序列的word2vec方法

l基于向量触发模型得到用户向量、主播向量

向量召回:基于DNN对用户&主播进行表征学习,构建模型触发

l线上基于用户&主播向量score直接进行扩召回

l支持用户和主播相似度计算

l对其他通道召回结果进行粗筛

小伙伴基于模型扩展性的,模型的特征提取、量级和参数展开了热烈的讨论。

2.2 Y的模型详解

模型层面:YY的模型历程,从初期特征小模型到连续特征大模型到离散特征模型。从小级别到亿级别,达到可以实时更新以及泛化能力强的模型。

2.3 YY的排序机制:Pointwise排序到整体页面优化

需要考虑内容、用户之间的交互性,从规则重排进化到整体优化模型,利用启发性规则等深度学习方式来做整体优选模型,来达到模型的自动化的更新和个性化选择。挖掘用户、主播之间的关系,通过高维特征计算和海量召回,大规模排序模型,进行个性化推荐,提升排序效果,给用户极致体验。

2.4 创意优化-主播封面优化

利用面部识别技术来识别和检测图片形成动态截图和封面优选,来提高的整体的推荐效率和用户体验。

茶歇时间:大家讨论了推荐算法的应用场景,以及行业内的feed流广告的特点以及广告的发展、变现方式等,以及离散型模型的优缺点进行了详细的讨论。包括详细的技术细节,例如关于权限的提取,指标的分类等等。

 

经过一系列的讨论,我们可以看出个性化推荐系统是一个系统工程,依赖产品、数据、架构、算法、人机交互等进行场景推荐,每一个环节缺一不可,YY在移动端持续发力,从在个性化推荐系统以及相应的机器学习和深度学习等算法策略的成功实践,其在提升直播的效率和dau上非常显著,也处于行业领先水平,同样推荐也可以迁移到其他的领域,个性化推荐能帮助我们的娱乐和消费更简单,更美好。

=================================================================

机顶盒直播节目推荐算法

离线推荐+实时推荐

实时推荐主要是用户刚看过的节目,找和这些节目内容类似的节目们(基于内容推荐);

计算出用户对每个节目的偏好值:
1、对于已收看节目的偏好值,可以通过用户收看节目的次数、时长等因素进行计算。如果用户已经有标签,则可以通过收视偏好的标签进行计算;
2、对于未收看节目的偏好值,可以通过节目与用户已收看节目的相似度,进行间接计算。

### 关于视频直播后台管理系统的设计实现方案 #### 背景介绍 随着互联网技术的发展,视频直播已经成为一种重要的信息传播方式。为了支持大规模的在线互动和内容分发,构建一套完整的视频直播后台管理系统显得尤为重要。此类系统通常需要具备用户管理、直播间管理、权限控制以及数据统计等功能。 #### 功能模块划分 根据已有的参考资料[^1],一个典型的视频直播管理系统应至少包含以下几个核心功能模块: - **首页展示** 提供系统概览页面,显示关键指标(如当前活跃主播数、观众数量等),并链接至其他主要功能区域。 - **直播信息管理** 支持管理员创建、编辑或删除直播间的元数据(例如标题、分类标签)。此外还需提供审核机制以确保发布的内容符合平台政策。 - **公告信息发布** 平台可以通过此模块向全体用户广播重要通知或者活动预告。 - **个人中心配置** 用户能够自定义其个人信息设置,比如头像上传、密码修改等基本选项。 - **后台运营管理工具** 高级别的超级管理员拥有额外的权利访问全面的数据报表视图,并执行更深层次的操作,诸如封禁违规账号或是调整服务器参数设定。 #### 技术选型建议 对于后端服务架构的选择上,考虑到灵活性扩展性的需求,推荐采用微服务模式配合Spring Boot框架快速搭建基础环境[^2]。前端界面则可选用现代单页应用程序(SPA)框架Vue.js及其生态组件库Element UI简化UI/UX开发流程[^3]。 以下是部分关键技术点说明: - 数据持久化层利用关系型数据库MySQL存储结构化的业务对象实例记录; - 文件资源托管借助云服务商提供的CDN加速网络降低延迟提升用户体验质量; - WebSocket协议实现实时消息推送满足评论区动态更新场景下的低延时要求。 下面给出一段简单的登录验证逻辑伪代码作为示范: ```java // Spring Security Configuration Example Code Snippet @Configuration @EnableWebSecurity public class WebSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http.csrf().disable() .authorizeRequests() .antMatchers("/api/public/**").permitAll() // Allow public API endpoints without authentication. .anyRequest().authenticated(); // All other requests require user to be authenticated. http.sessionManagement().sessionCreationPolicy(SessionCreationPolicy.STATELESS); http.addFilterBefore(new JwtAuthenticationTokenFilter(), UsernamePasswordAuthenticationFilter.class); } } ``` 上述片段展示了如何通过Spring Security插件保护API接口免受未授权访问威胁的同时保持无状态会话特性适配RESTful风格的服务调用标准。 --- #### 总结陈述 综上所述,设计一款高效稳定的视频直播后台管理系统不仅依赖合理的产品规划还需要扎实的技术功底支撑整个生命周期内的持续迭代优化工作。希望以上分享能对你有所帮助!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值