Java 线程池介绍与实践 创建方式:直接使用 ThreadPoolExecutor 构造函数特点提供了更多的配置选项,如核心线程数、最大线程数、线程空闲时间、任务队列等。可以根据具体需求进行灵活配置。适用场景:适用于需要高度定制化线程池的场景,如高性能服务器、复杂业务逻辑等。
如何保证MySQL与Redis缓存的数据一致性? 从上面的四种方案看,似乎没有一种方案真正能解决并发场景下MySQL数据与Redis缓存数据一致性的问题。如果业务要求必须要满足强一致性,那么不管如何优化缓存策略,似乎都无法满足,那最好的办法是不用缓存。强一致性:它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大。解决方案是读写串行化,而此方案会大大增加系统的处理效率,吞吐量也会大大降低。另外在大型分布式系统中,其实分布式事务大多数情况都不会使用,因为维护成本太高了、复杂度也高。
如何在有限内存下对外部大文件进行排序 外部排序算法是一种用于处理无法完全加载到内存中的数据集的排序方法。最常用的外部排序算法是多路归并排序,它分为两个主要步骤:分割 和 合并。分割:将大文件分割成多个小文件,每个小文件的大小应小于可用内存,以便可以对其进行内部排序。合并:将所有已排序的小文件合并成一个大的已排序文件。基于外部排序思想,我们把文件分成79个,分别存储10、11、12、……、87、88开头的数字,平均每个文件大小约为130MB(10GB/79)。
如何在 Java 中使用 Canal 同步 MySQL 数据到 Redis 特别是将 MySQL 数据实时同步到 Redis,可以显著提升应用的性能和响应速度。Canal 是阿里巴巴开源的一个数据库 Binlog 同步工具,可以实时捕获 MySQL 的 Binlog 日志并将其同步到其他存储系统。Canal的原理是基于mysql binlog技术,所以这里一定需要开启mysql的binlog写入功能,并且配置binlog模式为row。的内容,还要注意JDK版本及配置。在 MySQL 中插入、更新或删除数据,观察 Java 应用是否能够实时捕获这些变化并将数据同步到 Redis。
在docker中搭建redis哨兵环境 哨兵可以监控主节点和从节点的状态,并在主节点失效时自动进行故障转移。本文详细介绍了如何在docker中配置主节点、从节点和哨兵节点,并提供了详细的步骤和示例。出现该问题的原因是redis sentinel(哨兵)会更改节点和哨兵的conf文件,这涉及文件权限问题。最简单的一种处理方案:挂载文件时,选择挂载conf文件所在的目录,而不直接挂载conf文件。:哨兵在报告主节点和从节点的地址时,会使用主机名而不是 IP 地址。你应该能看到主节点和从节点的信息,确认哨兵已经正确监控主从节点。
Redis 组网方式入门 Redis 提供了多种组网方式,每种方式都有其适用的场景和优缺点。选择合适的组网方式需要根据具体的业务需求、性能要求和运维能力来决定。例如,对于简单的应用,单实例模式或主从复制模式可能就足够了;而对于高可用性和高性能要求的场景,集群模式或哨兵模式可能是更好的选择。希望本文能帮助读者更好地理解和选择适合自己的 Redis 组网方式。
在MySQL中存储IP地址的最佳实践 在现代网络应用中,IP地址是常见的数据类型之一,无论是用于日志记录、访问控制还是数据分析。正确地存储和处理IP地址对于数据库性能和数据准确性至关重要。本文将探讨在MySQL中存储IP地址的不同方法,并提供最佳实践建议。
IPv6地址的简化规则及Java中的处理方法 通过上述简化规则和Java代码示例,你可以在实际应用中轻松地处理和简化IPv6地址。合理利用这些规则不仅可以提高可读性,还能优化存储和传输效率。希望本文能够帮助你在处理IPv6地址时更加得心应手。
Redis进阶 单个Redis命令的执行是原子性的,但Redis没有在事务上增加任何维持原子性的机制,所以Redis事务的执行并不是原子性的。事务可以理解为一个打包的批量执行脚本,但批量指令并非原子化的操作,中间某条指令的失败不会导致前面已做指令的回滚,也不会造成后续的指令不做。Redis Stream提供了消息的持久化和主备复制功能,可以让任何客户端访问任何时刻的数据,并且能记住每一个客户端的访问位置,还能保证消息不丢失。Redis发布订阅(pub/sub)是一种消息通信模式:发送者发送消息,订阅者接收消息。
【并发控制策略详解】悲观锁与乐观锁 悲观锁(Pessimistic Locking)是一种假设最坏情况的锁定策略。它认为在处理过程中很可能发生冲突,因此在整个数据处理过程中会对数据进行锁定。当一个事务获取了某个数据项上的悲观锁之后,其他事务就不能对该数据项进行任何操作,直到第一个事务释放了这个锁。乐观锁(Optimistic Locking)是一种假设最好的情况的锁定策略。它认为在处理过程中不太可能发生冲突,因此允许事务自由地读取数据,但在提交更改前检查是否有其他事务已经修改了该数据。如果检测到数据已被更改,则当前事务会被回滚或者重新执行。
Redis的Bin目录文件及常用命令 什么是基数:比如数据集{1, 3, 5, 5, 7, 7, 8}的基数集为{1, 3, 5, 7, 8},基数(不重复元素个数)为5。假设西经为负,东经为正,南纬为负,北纬为正,即[-180, 180],[-90, 90]。Redis HyperLogLog是用来做基数统计的算法,它的优点是在输入元素的数量或体积非常大时,计算基数所需要的空间总是固定的、并且是很小的。集合的成员是唯一的,但分数是可以重复的。一个列表最多可以包含。实际应用中,可以继续做二分操作,通常二分操作的次数记为N,它是可以自定义的。
缓存系统的三大挑战:缓存击穿、缓存穿透和缓存雪崩 缓存击穿是指一个非常热门的数据(通常是热点数据)在缓存中过期或被删除后,同时有大量的请求并发访问该数据。由于缓存中数据已过期,这些请求会直接穿透到数据库,对数据库造成瞬间的巨大压力。缓存穿透是指查询一个不存在的数据,由于缓存中没有该数据,每次请求都会穿透缓存直接访问数据库,而数据库中也没有该数据。这种情况会导致大量的无效请求直接打到数据库上,增加了数据库的压力。
Redis BigKey问题 例如,如果需要频繁地查询某个范围内的元素,可以考虑使用有序集合(Sorted Set)而不是列表(List)。如果需要在网络上传输BigKey的数据(如主从复制、集群同步等),可能会导致网络传输延迟增加,影响系统的整体性能。例如,将一个大的列表拆分成多个小列表,或者将一个大的哈希表拆分成多个小哈希表。在进行RDB持久化或AOF日志备份时,BigKey会导致备份文件变得非常大,从而增加备份和恢复的时间。通过以上方法,可以有效地发现和解决Redis中的BigKey问题,提高系统的性能和稳定性。
一个简单的SQL面试题 平时使用join写SQL时一般使用的等值连接,即在on后面紧跟着表的主键等于另一个表的某一列,很少使用不等于或其他比较操作符判断。在语法上,可以使用等值连接以外的方式,这种类型的连接被称为非等值连接或范围连接。但在实际应用中,使用非等值连接可能会导致较大的中间结果集,特别是在数据量大的情况下,这可能会影响查询性能。
在Java中如何利用ClassLoader动态加密、解密Class文件 在Java开发中,保护代码的安全性是一个重要的课题。为了防止代码被轻易反编译,我们可以使用ClassLoader来动态地对Class文件进行加密和解密。本文将详细介绍如何实现这一过程,并提供完整的示例代码。
MySQL索引测试 表中没有任何数据时,无论是否使用索引,查询结果都是一样的。但直接扫描表(全表扫描)可能比使用索引更快,因为即使是空表,访问索引也需要一定的开销,但并不会带来性能提升。使用如下SQL语句建表,并使用b列作为条件查询。按照索引最左匹配原则,此时应该无法使用索引。但如果表中只包含主键列和索引列,此时查询优化器还是会使用索引。在MySQL中,即使表中没有数据,查询优化器也会考虑使用索引来执行查询。但在某些情况下,查询优化器可能会选择不使用索引,这通常是基于成本效益分析的结果。
MyISAM引擎介绍 MyISAM是MySQL的一种存储引擎,它以其简单性和高速度而著称。在早期的MySQL版本中,MyISAM广泛使用,尤其是在那些以读操作为主的应用场景中。然而,随着InnoDB存储引擎的成熟和普及,MyISAM的使用逐渐减少。
MySQL EXPLAIN输出信息 MySQL中的EXPLAIN语句提供了有关MySQL如何执行语句的信息。EXPLAIN适用于SELECT、DELETE、INSERT、REPLACE和UPDATE语句。那这些输出是什么意思呢?