行为资产定价理论假设
行为资产定价理论正在重塑现代金融理论体系,2017年诺贝尔经济学奖得主Richard Thaler的研究证实,行为因素对资产价格的影响在统计和经济意义上都具有显著性。假设投资者可能会受到以下几种心理偏差的影响:
1. 过度自信:投资者可能过于自信自己对市场走势的判断,或者对自己的投资技能过于自信。
2. 损失厌恶:投资者对损失的厌恶超过了对等额收益的喜好,导致在面临风险时做出非理性决策。
3. 代表性启发:投资者可能倾向于用以往的经验或直观的例子来判断新情况,而不是理性分析。
4. 可得性启发:投资者倾向于根据容易想起的信息来做决策,而不是根据所有可用信息。
5. 锚定:投资者的决策可能受到第一个接触到的信息(锚)的影响,而忽视其他信息。
6. 群体心理:投资者可能受到他人行为的影响,如羊群效应,从而导致市场波动。
综观中国股票市场十余年的发展历程,可以发现中国股市一个特有的现象,即所谓的“政策市”,表现为股票市场的走势受政策因素影响极大,系统性风险成为股票市场的主要风险。这恰恰与国外成熟的股票市场状况相反。“政策市”和成熟市场的差别主要在三个方面:
差异 | 成熟型 | 政策干预型 |
投资者结构 | 在投资者结构中以机构投资者为多 | 在“政策市” 中,投资者以散户为多 |
投资理念 | 投资收益主要来自股票的长期收益,投资者的投资理念趋于理性。 | 在“政策市”中,投资收益主要来自市场差价收益,投资者投资理念具有过度投机性、短期性和从众性,缺乏独立分析和判断能力,受市场消息面影响大。 |
政策影响程度 | 在成熟市场上,投资者对政策信息的接收,具有间接性、差别化的特点。 一些投资者认为是利好性政策,另一些投资者可能认为是利空性政策,投资者投资行为对冲,降低了系统性风险。 | 在“政策市”中,投资者接收政策的影响比较直接,在投资行为调整上较强的趋同性,从而在宏观层面上就表现为个股的同涨同落和股指的暴涨或暴跌,系统性风险较高。 |
政策依赖性偏差 | 自股市成立以来,政策对股市的干预比较频繁,政府在股市上的驱动意识和宏观调控意识对投资者的投资行为有很强的导向作用,使得我国股民在政策的反应上存在“政策依赖性偏差”。 利好的政策出台会加剧投资者的“过度自信”偏差,导致交投活跃,交易频率加快; 而如果利空政策出台,投资者的“过度恐惧”偏差往往会使交易频率有较大程度的下降 |
情绪指标影响:
投资者情绪高涨时,小盘股和成长股表现更优
情绪低落时,大盘价值股更抗跌
行为因子解释力:
行为因子对横截面收益率的解释力可达传统模型的1.5-2倍
在危机期间解释力更强
行为资产定价模型
行为资产定价模型(Behavioral Asset Pricing Models,BAPM)是传统金融理论与行为金融学相结合的产物,它通过引入投资者心理偏差和市场非理性因素,对传统资产定价模型(如CAPM)进行修正和扩展。以下是这一领域的系统解析:
比较维度 | 传统资产定价模型 | 行为资产定价模型 |
---|---|---|
理论基础 | 有效市场假说 | 有限理性与市场非有效性 |
投资者假设 | 完全理性 | 存在认知偏差和情绪影响 |
价格形成机制 | 信息立即反映在价格中 | 价格可能持续偏离基本面 |
风险定义 | 系统性风险 | 包括误定价风险和行为风险 |
主流行为资产定价模型如:
1. BAPM
E(R_i) = R_f + β_{i,λ}λ_m + β_{i,SMB}SMB + β_{i,HML}HML
其中:
-
λ_m:行为市场风险溢价
-
SMB:规模因子
-
HML:价值因子
2. 行为组合理论(BPT)
将投资者分为:
-
信息交易者(基于基本面)
-
噪声交易者(受情绪驱动)
资产价格表示为:
P_t = \frac{1}{1+r}[f_t + n_t]
f_t为基本面价值,n_t为噪声交易者影响
行为因子模型实现
行为资产定价理论为理解市场波动和投资者行为提供了更加丰富的视角,但在实际应用中,如何准确量化心理偏差对资产定价的影响仍然是一个挑战。
构建行为调整的CAPM
import pandas as pd
import statsmodels.api as sm
def behavioral_capm(returns, market_returns, sentiment):
"""
returns: 资产收益率序列
market_returns: 市场收益率
sentiment: 投资者情绪指标
"""
X = pd.DataFrame({
'Market': market_returns,
'Sentiment': sentiment
})
X = sm.add_constant(X)
model = sm.OLS(returns, X).fit()
return model.params
动量因子回测
def momentum_strategy(prices, lookback=6, holding=3):
mom = prices.pct_change(lookback)
ranked = mom.rank(axis=1, ascending=False)
long = ranked <= 10 # 前10%做多
short = ranked >= (ranked.shape[1]-10) # 后10%做空
positions = long.astype(int) - short.astype(int)
strategy_returns = (positions.shift(holding) * prices.pct_change(holding)).mean(axis=1)
return strategy_returns.cumsum()
组合优化
from cvxpy import *
def behavioral_portfolio(alpha, behavioral_risk, max_risk):
w = Variable(alpha.shape[0])
objective = Maximize(alpha.T @ w)
constraints = [
behavioral_risk.T @ w <= max_risk,
sum(w) == 1,
w >= 0
]
prob = Problem(objective, constraints)
prob.solve()
return w.value
实践应用建议
因子构建:结合传统因子(如PE、PB)与行为因子(如换手率、新闻情绪)