约瑟夫问题

约瑟夫问题(Josephus problem)又称为约瑟夫斯置换,是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,约瑟夫问题类似问题又称为约瑟夫环、“丢手绢问题”。

据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了和,一开始要站在什么地方才能避免被处决?Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。

17世纪的法国数学家加斯帕在《数目的游戏问题》中讲了这样一个故事:15个教徒和15 个非教徒在深海上遇险,必须将一半的人投入海中,其余的人才能幸免于难,于是想了一个办法:30个人围成一圆圈,从第一个人开始依次报数,每数到第九个人就将他扔入大海,如此循环进行直到仅余15个人为止。问怎样排法,才能使每次投入大海的都是非教徒。

约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。


源码

#include "stdafx.h"
#include <iostream.h>

void main ()
{
	int a[100]; //向系统申请空间
	int i; //定义数组的变量
	for (i=0; i<100; i++)
	{
		a[i] =0; //给数组赋初值,使每一个为空
	}

	cout<<"输入参与游戏人数:"<<endl; //互动信息
	int renshu; //定义相关变量
	cin>>renshu;
	cout<<"输入出局的间隔数:"<<endl;
	int jiange;
	cin>>jiange;
	for (i=0; i<renshu; i++) //给其赋初值
	{
		a [i] =1; //有人的地方都为1
	}

	int m=0; //数数,与间隔的人数比较
	int n=0; //出局的人数
	for (i=0; i<renshu; i++)
	{
		if ( a[i] == 1)
		{
			m = m+1;
			if (m == jiange)
			{
				m=0;
				a[i] = 0;
				n = n+1;
				cout<<"第"<<i+1<<"个人出局"<<endl;
				if (n == renshu)
				{
					break;
				}

			}
		}
		if ((i+1) == renshu)
		{
			i = -1;
		}
	}
}


效果



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值