约瑟夫问题(Josephus problem)又称为约瑟夫斯置换,是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,约瑟夫问题类似问题又称为约瑟夫环、“丢手绢问题”。
据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了和,一开始要站在什么地方才能避免被处决?Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
17世纪的法国数学家加斯帕在《数目的游戏问题》中讲了这样一个故事:15个教徒和15 个非教徒在深海上遇险,必须将一半的人投入海中,其余的人才能幸免于难,于是想了一个办法:30个人围成一圆圈,从第一个人开始依次报数,每数到第九个人就将他扔入大海,如此循环进行直到仅余15个人为止。问怎样排法,才能使每次投入大海的都是非教徒。
约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。
源码
#include "stdafx.h"
#include <iostream.h>
void main ()
{
int a[100]; //向系统申请空间
int i; //定义数组的变量
for (i=0; i<100; i++)
{
a[i] =0; //给数组赋初值,使每一个为空
}
cout<<"输入参与游戏人数:"<<endl; //互动信息
int renshu; //定义相关变量
cin>>renshu;
cout<<"输入出局的间隔数:"<<endl;
int jiange;
cin>>jiange;
for (i=0; i<renshu; i++) //给其赋初值
{
a [i] =1; //有人的地方都为1
}
int m=0; //数数,与间隔的人数比较
int n=0; //出局的人数
for (i=0; i<renshu; i++)
{
if ( a[i] == 1)
{
m = m+1;
if (m == jiange)
{
m=0;
a[i] = 0;
n = n+1;
cout<<"第"<<i+1<<"个人出局"<<endl;
if (n == renshu)
{
break;
}
}
}
if ((i+1) == renshu)
{
i = -1;
}
}
}