高并发之扩容思路

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bingdianone/article/details/83824837

垂直扩容(纵向扩展)

垂直扩容(纵向扩展) :提高系统部件能力,比如增加系统内存的容量。

在这个例子中,我们假设有3辆卡车,每辆车一次可以运25根木材,计算花费1小时的情况下可以运送到指定地点等待处理的木材数量。通过这些数字我们可以算出我们系统最大的负荷量:

3辆卡车 * 25根木材 * 1小时=75根木材/小时

如果我们选择垂直扩展模型,那么我们将怎么做来使我们每小时可以处理150根木材?我们需要至少做以下两件事中的一件:

使每辆卡车的运输量增加一倍(50棵树每小时),或者使每辆卡车的运输时间减半(每辆卡车30分钟)。

3辆卡车 * 50棵树 * 1小时 = 150棵树/每小时

或者

3辆卡车 * 25棵树 * 30分钟 = 150棵树/每小时

我们没有增加系统的成员数,但是我们通过增加系统成员的生产效率来获得期望的负荷量。

水平扩容(横向扩展)

水平扩容(横向扩展) :增加更多系统成员来实现,比如增加机器、服务器。
在以上运送木材的例子中,通过增加卡车的数量来运送木材。因此,当我们需要将负荷从75棵树每小时增加到150棵树每小时,那么只需要增加3辆卡车。

6辆卡车 * 25棵树 * 1小时 = 150棵树/每小时

假如我们已经选择了垂直扩展方式,那么我们想要每小时处理150棵被砍伐的树时需要怎么做呢?我们需要做到以下两方面之一:要么使每辆卡车的运输量翻倍(50棵木材一次),要么使每辆开车的运输时间减半(30分钟)。

3辆卡车 * 50棵树 * 1小时 = 150棵树/每小时

或者

3辆卡车 * 50棵树 * 30分钟 = 150棵树/每小时

在这个例子中,系统每个成员的生产力依然没变,我们通过增加更多的卡车来提高系统的能力。

读操作扩展 :memcache、redis、CDN等缓存

如果你的系统读操作非常多,那么通过关系型数据库如mysql或者PostgreSql来垂直扩展数据存储是一个不错的选择。结合你的关系型数据库 通过使用memcached或者CDN来构建一个健壮的缓存系统,那么你的系统将非常容易扩展。在这种模式中,如果数据库超负荷运行,那么将更多的数据放 入缓存中来缓解系统的读压力。当没有更多的数据往缓存中放时,可以更换更快的数据存储硬件或者买更多核的处理器来获取更多的运行通道。摩尔定律使通过这种 方法来垂直扩展变得和购买更好的硬件一样简单。

写操作扩展:Cassandra、Hbase等

如果你的系统写操作非常多,那么你可能更希望考虑使用可水平扩展的数据存储方式,比如Riak,Cassandra或者HBase。和大多数关系型 数据管理系统不同,这种数据存储随着增长增加更多的节点。由于你的系统大部分时间是在写入,所以缓存曾并不能像在读操作比较频繁的系统中起到那么大作用。 很多写频繁的系统一开始使用垂直扩展的方式,但是很快发现并不能根本解决问题。为什么?因为硬盘数和处理器数在某一点达到平衡,在这个边界上再增加一个处 理器或者一个硬盘都会是每秒钟的I/O操作数成指数性增长。相反,如果对写频繁的系统采取水平扩展策略,那么你将达到一个拐点,在这个拐点之后如果在增加 一个节点都远比使用更多的硬盘来的实惠。

展开阅读全文

没有更多推荐了,返回首页