Origin如何画小提琴图

本文详细介绍如何使用特定软件绘制小提琴图的过程,包括选择图表类型、指定数据列、设置坐标轴等步骤,并提供了导出图形的具体方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们先来看下小提琴图:
在这里插入图片描述

1)选择分组图型
Plot-》Categorical-》Grouped Box Charts-Indexed
在这里插入图片描述
2)选择纵坐标的数据列
选择Time列作为Data Column(单击黑色箭头,选中D(Y))
在这里插入图片描述
3) 选择X轴
这里选择B列的数据(Workload)作为Group Column
在这里插入图片描述
同时选择半小提琴图,Group Theme选择 Box_HalfViolin。
勾选Auto Preview,右边的框中可以预览绘制的图形,横坐标表示Group的值。
4)我们可以选择多组数据作为X轴
Group Column中Add新的列数据,这里选择C(Y)
在这里插入图片描述
可以对图进行简单设置,保存;
File->Export Graph 保存我们需要的图格式。
首先选择AutoView预览格式。
1)Image Type: 设置导出的图片格式,这里是pdf格式。
2)File Name 设置导出的图片名称。
3)Margin Control 设置为Tight in page
在这里插入图片描述
4)Image size
在这里插入图片描述
如果要添加网格线,设置如下:
双击坐标轴,选择“Grid Lines” ,设置“Major Grids Line” 选项即可。
在这里插入图片描述

### Python 实现奈奎斯特采样定理 为了验证奈奎斯特采样定理,在Python中可以通过模拟信号及其频谱来展示该原理。下面是一个简单的例子,通过生成正弦波并对其进行欠采样和适当采样的对比实验。 #### 导入必要的库 ```python import numpy as np import matplotlib.pyplot as plt from scipy.fft import fft, fftfreq ``` #### 定义参数与函数 定义一个用于创建正弦波的函数以及计算其离散傅里叶变换(DFT),以便观察频率成分。 ```python def generate_sine_wave(freq, sample_rate, duration): t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) wave = 0.7 * np.sin(2 * np.pi * freq * t) return t, wave def plot_signal_and_spectrum(time_data, signal_data, sample_rate): fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(8, 6)) # Plot the time-domain data. ax1.plot(time_data, signal_data) ax1.set_title('Time Domain Signal') ax1.set_xlabel('Time [s]') ax1.set_ylabel('Amplitude') N = len(signal_data) yf = fft(signal_data) xf = fftfreq(N, 1 / sample_rate)[:N//2] # Plot the frequency domain representation. ax2.stem(xf, 2.0/N * np.abs(yf[0:N//2]), 'b', markerfmt=" ", basefmt="-b") ax2.set_title('Frequency Domain Representation') ax2.set_xlabel('Frequency [Hz]') ax2.set_ylabel('|DFT|') plt.tight_layout() plt.show() ``` #### 应用奈奎斯特准则 按照奈奎斯特标准,最低采样率应该是最高频率分量两倍以上。这里分别尝试低于和高于这个条件的情况来进行比较[^1]。 对于原始信号频率设为`original_freq = 5 Hz`: - **合适采样**:采用至少 `sample_rate >= 2 * original_freq` - **不足采样**(即混叠现象):使用小于上述值的采样率 #### 执行测试案例 ```python if __name__ == "__main__": original_freq = 5 # Original sine wave frequency in Hertz # Proper Sampling Rate according to Nyquist Theorem proper_sample_rate = 2 * original_freq * 2 # More than twice the highest frequency component t_proper, s_proper = generate_sine_wave(original_freq, proper_sample_rate, 1) # Insufficient Sampling Rate leading to aliasing effect insufficient_sample_rate = original_freq # Less than required by Nyquist criterion t_insufficent, s_insufficient = generate_sine_wave(original_freq, insufficient_sample_rate, 1) print(f"Proper Sample Rate: {proper_sample_rate} Hz") print(f"Insufficient Sample Rate causing Aliasing: {insufficient_sample_rate} Hz") plot_signal_and_spectrum(t_proper, s_proper, proper_sample_rate) plot_signal_and_spectrum(t_insufficent, s_insufficient, insufficient_sample_rate) ``` 这段代码展示了当满足奈奎斯特采样定律时可以正确恢复原始信号;而如果违反,则会出现所谓的“混淆”,使得重建后的信号失真严重。这证明了遵循奈奎斯特原则的重要性以确保能够无损地捕捉到所需的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值