标题: 黄金连分数
黄金分割数0.61803... 是个无理数,这个常数十分重要,在许多工程问题中会出现。有时需要把这个数字求得很精确。 对于某些 精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,
其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!
言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。
比较简单的一种是用连分数:
1
黄金数 = ---------------------
1
1 + -----------------
1
1 + -------------
1
1 + ---------
1 + ...
这个连分数计算的“层数”越多,它的值越接近黄金分割数。
请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后100位。
小数点后3位的值为:0.618
小数点后4位的值为:0.6180
小数点后5位的值为:0.61803
小数点后7位的值为:0.6180340
(注意尾部的0,不能忽略)
你的任务是:写出精确到小数点后100位精度的黄金分割值。
注意:尾数的四舍五入! 尾数是0也要保留!
显然答案是一个小数,其小数点后有100位数字,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
解题思路:
识别问题等价于斐波那契的n项和n+1项的比值,n要多少才够,怎么处理很大的数和精度要求很高的浮点数。
1.化为求斐波那契相邻两项的比值,到多少项?越多越精确,n/n+1项,n再往上增加,这个比值的小数点后101位是稳定的,也就是不变的。
2.double无法表示100位小数,BigInteger和BigDecimal。
实现代码:
package java_B_2013;
import java.math.BigDecimal;
import java.math.BigInteger;
public class _04_黄金连分数 {
public static void main(String[] args) {
BigInteger a=BigInteger.ONE;
BigInteger b=BigInteger.ONE;
//斐波那契数列的迭代形式
for (int i = 3; i < 500; i++) {
BigInteger t=b;
b=a.add(b);//大整数的加法
a=t;
}
//大浮点数的除法
BigDecimal divide = new BigDecimal(a,110).divide(new BigDecimal(b,110), BigDecimal.ROUND_HALF_DOWN);
//截取字符串
System.out.println(divide.toPlainString().substring(0,103));
}
}
运行结果: