小坤兽
码龄5年
关注
提问 私信
  • 博客:120,497
    120,497
    总访问量
  • 30
    原创
  • 1,176,559
    排名
  • 48
    粉丝

个人简介:vx:w1617530107

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-06-23
博客简介:

bingokunkun的博客

查看详细资料
个人成就
  • 获得102次点赞
  • 内容获得25次评论
  • 获得573次收藏
  • 代码片获得418次分享
创作历程
  • 3篇
    2022年
  • 26篇
    2021年
  • 1篇
    2020年
成就勋章
TA的专栏
  • deep learning
    12篇
  • 那些花里胡哨的算法
    2篇
  • 加密流量
    5篇
  • CSDN活动
    3篇
  • knowledge graph
    3篇
  • 各种工具
    2篇
  • 论文与项目
    2篇
  • 计算机组成
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络生成对抗网络
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

正交匹配追踪算法(OMP)简介与详解

介绍匹配追踪算法MP、正交匹配算法OMP。附带sklearn代码
原创
发布博客 2022.03.14 ·
16408 阅读 ·
13 点赞 ·
7 评论 ·
119 收藏

项目-2.EVP论文与代码解析(Audio-Driven Emotional Video Portraits)

EVP[]CV:音视频转换1.资源链接1.1 论文1.2 代码2.论文解析3.代码复现4.代码解析5.个人总结1.资源链接1.1 论文(Audio-Driven Emotional Video Portraits)[https://arxiv.org/abs/2104.07452]1.2 代码2.论文解析3.代码复现4.代码解析5.个人总结摘要 尽管之前在生成音频驱动的说话人脸方面取得了成功,但之前的大多数研究都集中在语音内容与嘴形之间的相关性上。 面部情感是自然人脸上最重要的特征
原创
发布博客 2022.02.28 ·
5382 阅读 ·
1 点赞 ·
9 评论 ·
14 收藏

项目-1.CROSSFORMER论文与代码解析(CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention)

CROSSFORMER[CV:图像分类、目标检测]1.资源链接1.1论文1.2代码2.论文解析2.0 摘要2.1 基本介绍2.2 背景2.3 本文模型2.3.1 Cross-Scale Embedding Layer(CEL)2.3.2 CrossFormer Block2.3.2.1长短距离注意力机制 (LSDA)2.3.2.2 Dynamic Position Bias(DPB)3.代码解析3.1下载之初3.2环境搭建3.2.0 下载数据集3.2.1图像分类3.2.1.1 环境配置3.2.1.2 修改代
原创
发布博客 2022.02.15 ·
3793 阅读 ·
4 点赞 ·
1 评论 ·
17 收藏

深度学习-12.结构化概率模型

结构化概率模型非结构化建模的挑战使用图描述模型结构有向模型无向模型配分函数基于能量的模型分离和d-分离在有向模型和无向模型中转换因子图从图模型中采样结构化建模的优势学习依赖关系推断和近似推断结构化概率模型的深度学习方法非结构化建模的挑战使用图描述模型结构有向模型无向模型配分函数基于能量的模型分离和d-分离在有向模型和无向模型中转换因子图从图模型中采样结构化建模的优势学习依赖关系推断和近似推断结构化概率模型的深度学习方法...
原创
发布博客 2021.12.09 ·
763 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

加密流量分析-5.加密与非加密流量识别

加密与非加密流量识别1. 加密流量性质2. 加密流量识别方法2.1 多元组熵2.2 累加和检验2.3 C4.5决策树算法2.4 加密流量识别流程与算法1. 加密流量性质由于加密后的流量数据呈现均匀随机分布的特点,大多研究人员都是采用基于负载随机性检测的识别方法。2. 加密流量识别方法通常在明文传输的网络流量中,流量数据的分布会根据应用类型而符合相应的规律。而流量数据在加密后,其内容相关的统计特征将会被消除。本节从加密流量的多元组熵、累加和检验值特征等方面进行分析,并简要介绍C4.5决策树模型。2.
原创
发布博客 2021.11.29 ·
7213 阅读 ·
1 点赞 ·
0 评论 ·
15 收藏

加密流量分析-4.加密协议分析

加密协议分析(上)1.IPSec安全协议1.1 相关概念1.1.1 数据流1.1.2 安全联盟SA1.2 报文首部认证协议AH1.3 封装安全载荷协议ESP1.4 互联网间密钥交换协议IKE1.5 协议实例分析1.6 流量特征分析2.TLS安全协议2.1 handshake协议2.2 Record协议2.3 TLS相关子协议2.4 TLS1.3与TLS1.2的区别2.5 协议实例分析2.6 流量特征分析本章介绍几种典型的网络加密协议,由于篇幅较长分为两篇博客。上篇介绍IPSec和TLS,下篇介绍HTTP
原创
发布博客 2021.11.29 ·
1639 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

加密流量分析-3.数学理论方法

数学理论方法1.信息熵2.随机性测度3. 决策树4.深度学习网络4.1 CNN4.2 自编码器1.信息熵加密后的流量呈现均匀分布的特点,因此计算信息上可以很好地判断流量是否被加密。信息上的定义如下H(X)=−∑i=1Np(xi)log2p(xi)H(X)=-\sum^N_{i=1}p(x_i)log_2p(x_i)H(X)=−i=1∑N​p(xi​)log2​p(xi​)当X中所有元素出现次数相同时,及服从均匀分布时,熵的值最大。为了能更好的比较熵的大小,定义标准熵为HN(X)=−∑i=1Np
原创
发布博客 2021.11.25 ·
2479 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

加密流量分析-2.研究背景

研究背景1.加密流量分类概述1.1识别方法1.2 识别粒度1.3 识别对象等级2.加密流量识别粒度相关研究2.1加密与未加密流量分类2.2 加密协议识别2.2.1 IPSec2.2.2 SSL/TLS2.2.3 SSH2.3 服务识别2.4 异常流量识别2.5 内容参数识别3.加密流量精细化分类方法相关研究(六种)3.1 基于有效载荷3.2 数据报负载随机性检测3.3 机器学习3.4 基于行为的识别方法3.5 基于数据报大小分布3.6 混合方法3.7 加密流量识别方法综合对比4.分类结果影响因素4.1 隧道
原创
发布博客 2021.11.25 ·
3956 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏

加密流量分析-1.研究现状

加密流量研究现状1.研究背景2.研究意义2.1流量识别问题2.2加密流量识别问题的主要挑战3.评价指标3.1不同维度3.2常见机器学习的评价维度4.相关研究目标与内容4.1 加密协议分析4.2 加密与非加密流量识别4.3 加密网络特征选择4.4 加密流量自适应分类方法4.5 SSL/TLS加密应用的精细化识别4.6 HTTPS加密流量识别4.7 加密视频QoE参数识别4.8 加密恶意流量识别5.未来研究方向1.研究背景随着互联网的发展,全球IP流量早已超过了ZB阈值,与此同时,人们的隐私意识也正在提高,
原创
发布博客 2021.11.25 ·
9801 阅读 ·
5 点赞 ·
0 评论 ·
36 收藏

深度学习-11.表示学习

表示学习贪心逐层无监督预训练迁移学习和领域自适应半监督解释因果关系分布式表示得益于深度的指数增益提供发现潜在原因的线索贪心逐层无监督预训练迁移学习和领域自适应半监督解释因果关系分布式表示得益于深度的指数增益提供发现潜在原因的线索...
原创
发布博客 2021.11.23 ·
362 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-10.自编码器

自编码器欠完备自编码器正则自编码器稀疏自编码器去噪自编码器惩罚导数作为正则表示能力、层的大小和深度随机编码器和解码器去噪自编码器详解得分估计历史展望使用自编码器学习流形收缩自编码器预测稀疏分解自编码器的应用欠完备自编码器正则自编码器稀疏自编码器去噪自编码器惩罚导数作为正则表示能力、层的大小和深度随机编码器和解码器去噪自编码器详解得分估计历史展望使用自编码器学习流形收缩自编码器预测稀疏分解自编码器的应用...
原创
发布博客 2021.11.22 ·
1832 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

深度学习-9.线性因子模型

线性因子模型概率PCA和因子分析独立成分分析慢特征分析稀疏编码PCA的流形解释概率PCA和因子分析独立成分分析慢特征分析稀疏编码PCA的流形解释
原创
发布博客 2021.11.22 ·
647 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-8.实践方法论

实践方法论性能度量默认的基准模型决定是否收集更多数据选择超参数手动调整超参数自动超参数优化算法网格搜索随机搜索基于模型的超参数优化调试策略性能度量默认的基准模型决定是否收集更多数据选择超参数手动调整超参数自动超参数优化算法网格搜索随机搜索基于模型的超参数优化调试策略...
原创
发布博客 2021.11.16 ·
2031 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-7.循环神经网络RNN

循环神经网络展开计算图RNN导师驱动过程和输出循环网络计算循环神经网络的梯度作为有向图模型的循环网络基于上下文的RNN序列建模双向RNN基于编码解码的序列到序列架构深度循环网络递归神经网络长期依赖的挑战回声状态网络渗漏单元和其他多时间尺度的策略时间维度的跳跃连接渗漏单元和一系列不同时间尺度删除连接长短期记忆和其他门控RNN优化长期依赖截断梯度引导流信息正则化外显记忆展开计算图对于一个动态系统s(t)=f(s(t−1);θ)s^{(t)}=f(s^{(t-1)};\theta)s(t)=f(s(t−1);
原创
发布博客 2021.11.16 ·
1017 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-6.卷积神经网络CNN

卷积神经网络卷积运算数学上的卷积动机稀疏交互参数共享等变表示池化无限强的先验基本卷积函数的变体结构化输出数据类型高效的卷积算法随机或无监督的特征卷积网络的神经科学基础卷积运算数学上的卷积数学上的卷积是一种对两个实变函数的数学运算。公式为s(t)=∫x(a)w(t−a)das(t) = \int x(a)w(t - a)\mathbb{d}as(t)=∫x(a)w(t−a)da动机稀疏交互参数共享等变表示池化无限强的先验基本卷积函数的变体结构化输出数据类型高效的卷积算法随机或无监督
原创
发布博客 2021.11.05 ·
607 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-5.深度模型的优化

优化学习和纯优化有什么不同经验风险最小化代理损失函数和提前终止批量算法和小批量算法神经网络优化中的挑战病态局部极小值高原、鞍点和其他平坦地区悬崖和梯度爆炸长期依赖非精确梯度优化的理论限制基本算法随机梯度下降动量Nesterov动量参数初始化策略自适应学习率算法AdaGradRMSPropAdam选择正确的优化算法二阶近似方法牛顿法共轭梯度BFGS优化策略和元算法批标准化坐标下降Polyak平均监督预训练设计有助于优化的模型延拓法与课程学习学习和纯优化有什么不同经验风险最小化代理损失函数和提前终止批量
原创
发布博客 2021.10.13 ·
922 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

lambda函数|Python技能树征题

lambda函数第一题第二题第一题坤坤有一本书,他统计了书里四个字母a,b,c,d出现的次数并做成了字典dic,如下所示dic = {'a': 9669, 'b': 5660, 'c': 7961, 'd': 1742}现在他想将他按照字母的出现次数升序排序成一个列表arr,结果如下所示arr = ['d', 'b', 'c', 'a'] # d出现的次数最少,网上一次是b,c,aA.arr = sorted(dic.keys(), key=lambda i: dic[i])B.ar
原创
发布博客 2021.10.11 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

列表推导式|Python技能树征题

列表推导式第一题(难度:⭐⭐⭐⭐)第二题第三题第一题(难度:⭐⭐⭐⭐)坤坤想要找到20以内的所有质数,他写了下面四段程序,哪些能够正确输出结果呢?A.arr = [i for i in range(1, 20) for j in range(1, 20) if j % i == 0 and j > i]print(arr)B.arr = {j for i in range(2, 20) for j in range(i + 1, 20) if j % i == 0}arr = [i
原创
发布博客 2021.10.10 ·
379 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

异常捕获预处理|Python技能树征题

异常捕获预处理1.常见异常的类型题目一题目二2.except、else与finally题目三1.常见异常的类型常见异常类描述FloatingPointError浮点计算错误OverflowError数值运算超出最大限制ZeroDivisionError除(或取模)零 (所有数据类型)AttributeError对象没有这个属性IOError输入/输出操作失败ImportError导入模块/对象失败IndexError序列中没有此索引(
原创
发布博客 2021.10.09 ·
1922 阅读 ·
7 点赞 ·
2 评论 ·
28 收藏

深度学习-4.正则化

深度学习中的正则化参数范数惩罚L2L^2L2参数正则化L1L^1L1参数正则化作为约束的番薯惩罚正则化和欠约束问题数据集增强噪声鲁棒性半监督学习多任务学习提前终止参数绑定稀疏表示集成学习Dropout对抗训练切面距离、正切传播和流形正切分类器参数范数惩罚L2L^2L2参数正则化L1L^1L1参数正则化作为约束的番薯惩罚正则化和欠约束问题数据集增强噪声鲁棒性半监督学习多任务学习提前终止参数绑定稀疏表示集成学习Dropout对抗训练切面距离、正切传播和流形正切分类器...
原创
发布博客 2021.10.09 ·
523 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多