yoloV5环境搭建

文章详细介绍了如何创建Python3.11.1的虚拟环境,下载并安装YOLOv5项目及其依赖库,以及如何使用labelimg进行标注工具的安装。同时,提到了数据集的组织结构,特别是score目录下images和labels子目录,用于存放训练、测试和验证集的图片与标签。训练模型时需关注data和model目录下的yaml文件以调整参数。
摘要由CSDN通过智能技术生成

1,创建python3.11.1虚拟环境
virtualenv -p "D:\test\Python\python.exe" yolo5_py3.11.1

2,下载yolov5项目
https://github.com/ultralytics/yolov5
最新yolov8项目地址
https://github.com/ultralytics/ultralytics
3,安装相关依赖库
pip install -r requirements.txt
4,标注工具labelimg安装
pip install labelimg -i https://mirror.baidu.com/pypi/simple

5,数据集配置
YOLO_Mask
└─ score
       ├─ images
       │    ├─ test # 下面放测试集图片
       │    ├─ train # 下面放训练集图片
       │    └─ val # 下面放验证集图片
       └─ labels
              ├─ test # 下面放测试集标签
              ├─ train # 下面放训练集标签
              ├─ val # 下面放验证集标签

训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值