图论的一些总结

有向图的环判断:当前结点在path中存在(path就是 stack里的结点)。marked 正常标记, inStack在进入结点标记,退出前unmark

无向图的判断:当前结点的某个扩展结点mark过,且不是当前结点的前驱,因为无向无环图每个结点只有一个前驱,

拓扑排序 = 原图后序dfs遍历的reverse order , 也是反图的后序dfs序列。 反图就是原图每条边反向后的图


无根树的直径:先从任意一点dfs 找到一个最远点,这个点必然是直径的端点之一,再从这个点dfs找最远点,这个最远点就是另一个端点。方法二:分治法, 取任意一点做根,求最远的一条路径,这条路径必然在某个子树里,或者是过根的路径,利用 了leetcode 124 题 Max path sum 的思想。这种方法还可以求距离最短的两个端点(叶子结点)的路径


求图中一点,它到所有其他点的距离和最小: 直径的中点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值