Radon变换
Radon 变换是图像重建技术的理论基础,它提供了从投影数据得到重建图像的 断层成像方法。由投影重建图像的问题,自20世纪初就开始不断应用于医学、放 射科学、物理、航海等领域。Radon 变换的本质就是在N维空间中,根据N维图 像在各个不同方向的N-1 维的投影数据,重建出原始的N维图像。对于图像的 Radon 变换处理,是对其在变换域内进行特征提取,将图像空间映射到参数空间。
提示:本文主要参考哈工大杨童的硕士论文介绍
解释:
1.投影
所谓投影是低维对高维的一种观察,由于无法一次对高维结构进行解释,但可以在超平面上的投影进行解释。Radon变换中的投影就是函数沿线积分,anyway,可以自己决定怎么理解。
2.Radon 变换的本质
Radon变换实质上是将xoy平面内的点映射到sot平面上从而实现了空间转 换,xoy平面上函数沿线积分,一条积分线上的点转换到sot平面上后都位于同一个点。即这仅仅是一种简单的坐标转换。
坐标转换后,,积分射线L可以用角度和距离表示为s=xcon$+ysin$,但我们确定s和$时,x,y此时满足一个指定的直线方程。所以2-8的推导和意义十分明确。
最后
其实至少有两点值得思考:
1.为什么radon选择角度和距离这两个变量做为基向量(线性代数中的正交基),以这种形式分离不同投影的射线(即文章中的线积分路径)或叫slice(切片)对求解有什么优点,这种正交基的物理意义是什么?似乎地震学中射线对垂直速度变化才有sensitivity可以进行一定的物理解释,毕竟数学方程的解或方法本身是没有物理意义的,只是为了解释物理的现象进行的凑解罢了(薛定谔方程)。
2.既然当角度和距离这两个变量完备时可以用反radon进行图像的恢复,那在现实中不完备时常态,此时是否有解呢?应该如何改进和近似恢复呢?
以上内容按照 CSDN 博客的格式进行了排版,包含了标题、子标题以及公式排版等。