96. 奇怪的汉诺塔

汉诺塔问题,条件如下:

1、这里有A、B、C和D四座塔。

2、这里有n个圆盘,n的数量是恒定的。

3、每个圆盘的尺寸都不相同。

4、所有的圆盘在开始时都堆叠在塔A上,且圆盘尺寸从塔顶到塔底逐渐增大。

5、我们需要将所有的圆盘都从塔A转移到塔D上。

6、每次可以移动一个圆盘,当塔为空塔或者塔顶圆盘尺寸大于被移动圆盘时,可将圆盘移至这座塔上。

请你求出将所有圆盘从塔A移动到塔D,所需的最小移动次数是多少。

汉诺塔塔参考模型
汉诺塔塔参考模型

输入格式
没有输入

输出格式
对于每一个整数n(1≤n≤121≤n≤12),输出一个满足条件的最小移动次数,每个结果占一行。

输入样例:
没有输入
输出样例:
参考输出格式

解法:先写出3阶汉诺塔递推公式,再在四阶上使用三阶公式求最小次数。

#include<bits/stdc++.h>
using namespace std;
int d[15],f[15];
int main()
{
    d[1] = 1;
    for(int i=2;i<=12;i++)
    {
        d[i] = 2*d[i-1]+1;
    }
    memset(f,0x3f,sizeof f);
    f[1] = 1;
    for(int i=1;i<=12;i++)
    {
        for(int j=1;j<=i;j++)
        {
            f[i] = min(f[i],f[j]*2+d[i-j]);
        }
    }
    for(int i=1;i<=12;i++) cout<<f[i]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值