汉诺塔问题,条件如下:
1、这里有A、B、C和D四座塔。
2、这里有n个圆盘,n的数量是恒定的。
3、每个圆盘的尺寸都不相同。
4、所有的圆盘在开始时都堆叠在塔A上,且圆盘尺寸从塔顶到塔底逐渐增大。
5、我们需要将所有的圆盘都从塔A转移到塔D上。
6、每次可以移动一个圆盘,当塔为空塔或者塔顶圆盘尺寸大于被移动圆盘时,可将圆盘移至这座塔上。
请你求出将所有圆盘从塔A移动到塔D,所需的最小移动次数是多少。
汉诺塔塔参考模型
输入格式
没有输入
输出格式
对于每一个整数n(1≤n≤121≤n≤12),输出一个满足条件的最小移动次数,每个结果占一行。
输入样例:
没有输入
输出样例:
参考输出格式
解法:先写出3阶汉诺塔递推公式,再在四阶上使用三阶公式求最小次数。
#include<bits/stdc++.h>
using namespace std;
int d[15],f[15];
int main()
{
d[1] = 1;
for(int i=2;i<=12;i++)
{
d[i] = 2*d[i-1]+1;
}
memset(f,0x3f,sizeof f);
f[1] = 1;
for(int i=1;i<=12;i++)
{
for(int j=1;j<=i;j++)
{
f[i] = min(f[i],f[j]*2+d[i-j]);
}
}
for(int i=1;i<=12;i++) cout<<f[i]<<endl;
}